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Welcome to the International Congress on 
Music and Mathematics at Puerto Vallarta! 

 
It is my honor and pleasure to invite all scholars and artists who are engaged in the fascinating relation 
between mathematics and music to attend the International Congress on Music and Mathematics in 
Puerto Vallarta, Mexico, Nov. 26–29, 2014.  

As we are moving into the 21st Century, studies on mathematics and music have established their 
presence in major annual conference venues, such as the International Computer Music Conference, the 
American Mathematical Society Conference, and the AMS/SEM/SMT Music Conference. In 2007 the 
Society for Mathematics and Computation in Music was founded, and related scholarly publications are 
documented in the Journal of Mathematics and Music and the Computational Music Science book series, 
together with the society’s biannual conference since 2007. 

The International Congress on Music and Mathematics in Puerto Vallarta in 2014 is a strong 
continuation of these events and a proof of the Mexican engagement in Mathematical Music Theory 
(MaMuTh), that started with MaMuTh talks and concerts at the 1st International Seminar on MaMuTh in 
2000 in Mexico City and a Special Session at the Saltillo’s Congress of the Mathematical Society of 
Mexico, and continued in the 4th International Seminar on MaMuTh in 2010 at Huatulco. This 
remarkable tradition, guaranteed by the congress head, mathematician at UNAM and classical concert 
pianist, Emilio Lluis-Puebla who organized the previous Mexican events, highlights the cultural 
counterpoint of scholarly endeavors and artistic creations.  

Apart from well-known artistic interest in MaMuTh by famous composers, such as Iannis Xenakis, 
Pierre Boulez or György Ligeti, MaMuTh publications, projects, and creations testify serious 
mathematical culture, including combinatorics, the theories of words, graphs, groups, numbers, and 
module representations, algebraic and differential geometry, ODEs and PDEs, statistics, homological 
algebra, number theory, algebraic topology, category theory, and topos theory. This fact has attracted the 
interest of renowned mathematicians, such as Yves André, Pierre Cartier, Alain Connes, Alexander 
Grothendieck, Yves Helleguarch, and Yuri Manin.  

MaMuTh is however not just applied mathematics, it is a mutual fertilization, similar to mathematics 
and physics, challenging maths in new concept architectures and models, such as gesture theory or 
Galois theory of concepts, and also regarding mathematical conjectures being enlightened by music-
theoretical research. Moreover, musical creativity using software has strongly profited from 
mathematical modeling of analytical and compositional approaches for the working creative musician 
and music theorist. 

In this sense, I wish you all the best in a shared effort and profit towards the 2014 venue in a spirit 
of unified human understanding. 

 
 
Prof. Dr. Guerino Mazzola, School of Music, University of Minnesota. 
Honorific president of the 2014 International Congress on Music and Mathematics. 
President of the Society for Mathematics and Computation in Music. 
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Important dates calendar 

2013 

June 21 First announcement. Poster & website launching. 

2014 

March 02 Second announcement. General reminder & news publication. 

March 23 Early registration opens (registration online). 

June 22 Deadline for submission of individual paper proposals. 

July 13 Deadline for submission of panel proposals and paper proposals within a panel. 

July 18 Announcement of accepted proposals (of individual papers). 

July 27 Announcement of accepted panel proposals and paper proposals within a panel. 

August 18 Deadline for submission of individual papers (program version). 

August 31 Announcement of accepted proposals of individual papers (program version). 

September 08 Deadline for submission of papers within a panel (program version). 

September 14 Announcement of accepted paper proposals within a panel (program version). 

October 06 Deadline for submission of proposals for concerts and other cultural activities. 

November 09 Announcement of accepted proposals for concerts and other cultural activities. 

November 16 Final date for accommodation reservations. 

November 19 Full program & abstracts released online. 

November 22 Deadline for hotel payment. 

November 26–
29 Congress development. 

December 3 Third announcement. 

2015 

January 28 Deadline for submission of revised papers. 

April — Proceedings edited by Springer, Berlin. 
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Schedules segmented by panels 
November 26–29, 2014 

Special theme: 
“Analogous Thought and Abstract Forms in Music” 

Special panel: 
“Mathematics and Aesthetics in Julian Carrillo’s (1875–1965) Work”. 

Plenary lectures (I – V) 

Panels: 

I. Dynamical Systems. III. Gestural Theories. V. Modern Geometry 
and Topology. 

II. Logic, Algebra and 
Algorithmics. 

IV. New Methods for 
Music Analysis. 

 

 

 timeschedule 

Arrival at the Hotel 11:00 – 13:00 
am 

Registration 

Participants must register at the entrance of the Hilton’s 
Convention Center, in front of the hotel’s main entrance. 12:00 – 12:45 

Institutional welcoming. 13:00 – 13:15 

Gabriel Pareyon (ICMM program chair) welcome lecture: 
“A Survey on the Mexican Tradition of Music and 
Mathematics”. 

13:15 – 13:30 
Opening ceremony 
Room: Salon Vallarta C 

Emilio Lluis-Puebla (ICMM head) welcome lecture: “On 
the Relationship Between Music and Mathematics”. 

13:30 – 13:45 

Plenary Lecture I 
Room: Salon Vallarta C 

Guerino Mazzola (ICMM Honorific president): “Gestural 
Dynamics in Modulation—A Musical String Theory”. 

14:00 – 15:00 

Break Lunch 15:00 – 16:30 

SHUTTLE BUS to the 
University Campus Transportation to the opening concert. 16:30 – 17:00 

pm 

Concert 
Place: Auditorio Cifuentes 
Lemus, CUC – Universidad de 
Guadalajara 

Dr. Marco Antonio Cortés-Guardado (Rector of the 
University of Guadalajara’s Campus Puerto Vallarta) 
welcome speech. 

CONCERT: 

Alacrán del Cántaro: electroacoustic concert. 

Guerino Mazzola (piano): free jazz piano program. 

17:00 – 19:30 

SHUTTLE BUS to the 
Hilton Resort PV Transportation back to the Hilton. 19:30 – 20:00 

Wednesday 26 

eve 

Toast and dinner (only for 
the Hilton’s guests). 

Puerto Vallarta’s Hilton Resort. 
20:00 – 21:00 
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Panel 1 on 
Dynamical Systems 
Room: Salon Vallarta C 

Samuel Vriezen (independent researcher, Amsterdam): 
“Diagrams, Games and Time”. 

Roberto Morales-Manzanares 
(LIM – University of Guanajuato): “Compositional 
Generation of Macro-Structures with Dynamical Systems in 
my Opera Dunaxhii ”. 

Elaine Chew (Queen Mary University of London): “The 
Mechanics of Tipping Points: A Case of Extreme Elasticity 
in Expressive Timing”. 

Tom Johnson & Samuel Vrizen (composers from Paris & 
Amsterdam): “Informal talk between Tom Johnson and 
Samuel Vriezen”. 

10:00 – 12:30 

am 

Coffee break 12:30 – 13:00 

Plenary lecture II 
Room: Salon Vallarta C 

Clarence Barlow (University of California, Santa Barbara): 
“On the Structural and the Abstract in my Compositional 
Work”. 

13:00 – 14:00 

 

Break Lunch 14:00 – 16:00 

Parallel sessions  16:00 – 18:00 

Panel 1 on Logic, Algebra 
and Algorithmics. 
Room: Salon Vallarta D 

Harald Fripertinger (Karl-Franzens-Universität Graz) and 
Peter Lackner (Kunst-Universität Graz): “Tone Rows and 
Tropes”. 

Pauxy Gentil-Nunes (Universidade Federal do Rio de 
Janeiro, UFRJ): “Partitiogram, Mnet, Vnet and Tnet: 
Embedded Abstractions Inside Compositional Games”. 

David Clampitt (Ohio State University): “Lexicographic 
Orderings of Modes and Morphisms”. 

Daniel Moreira de Sousa (Universidade Federal do Rio de 
Janeiro, UFRJ): “Textural Contour: A Proposal for Textural 
Hierarchy through the Ranking of Partitions Lexset”. 

16:00 – 18:00 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Thursday 27 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

pm 

Panel 1 on 
Gestural Theories. 
Room: Salon Agave 

Carlos Mathias Motta (Universidade Federal Fluminense, 
Niterói, Brazil): “Project DRUMMATH: Rhythms that Build 
Meaning in Mathematical Concepts for the Visually 
Impaired”. 

Yemile del Socorro Chávez-Martínez (Faculty of Sciences, 
UNAM): “Mazzola’s Escher Theorem”. 

Teresa Campos (PMDM – UNAM): “A Proposal for 
Musical Writing for the Visually Impaired”. 

Juan Sebastián Arias (Universidad Nacional de Colombia, 
Bogotá): “Gestures on Locales and Localic Topoi”. 

16:00 – 18:00 



 9

 

pm 

Special panel (1): 
“Mathematics and 
Aesthetics in Julian 
Carrillo’s (1875–1965) 
Work”. 

Room: Oficina 

Roman Brotbeck (Bern University of the Arts, HKB, and 
Special panel’s chair): “An Analytical-Comparative Approach 
to Carrillo’s Metamorphosis and Wyschnegradsky’s Non-
Octaviant Spaces and their Reverberations”. 

Mario García Hurtado (PMDM – UNAM): “Julián 
Carrillo’s Numerical Notation in his Guitar Music: 
Challenges to the Interpreter and Performer”. 

Noah Jordan (Composer and independent researcher, 
Vancouver, Canada): “Microtonality and the Music of Julian 
Carrillo from a Xenharmonic Perspective”. 

Francisco Guillermo Herrera-Armendia & Marcos 
Fajardo-Rendón (Department of Mathematics, Escuela 
Normal Superior de México, Mexico City): “Digital 
Technology in Julian Carrillo’s Microtonal Music Research”. 

16:00 – 18:00 

Break 18:00 

Place: Rhythms Hilton’s 
Lounge. 

Colleagues informal meeting (only for the Hilton’s guests). 
18:15 – 19:30 

SHUTTLE BUS to the 
University Campus Transportation to the concert. 19:30 – 20:00 

Concert 
Place: Auditorio Cifuentes 
Lemus, CUC – Universidad de 
Guadalajara 

Emilio Erandu (piano): classical piano program. 

Emilio Lluis-Puebla (piano): program with Mexican 
historical repertoire. 

20:00 – 22:00 

Thursday 27 

eve 

SHUTTLE BUS to the 
Hilton Resort PV Transportation back to the Hilton. 22:00 – 22:30 

Plenary lecture III 
Room: Salon Vallarta C 

Octavio Agustín-Aquino (Universidad de la Cañada, 
Oaxaca): “Computational and Combinatorial Aspects of 
Counterpoint Theory”. 

09:40 – 10:40 

Plenary lecture IV 
Room: Salon Vallarta C 

Emmanuel Amiot (IRCAM, Paris): “Viewing Diverse 
Musical Features in Fourier Space: A Survey”. 

10:45 – 11:45 

Coffee break 11:45 – 12:00 

Parallel sessions  12:00 – 14:00 

 
 
 
 
 
 
 
 
 
 
 
 
 

Friday 28 
 
 
 

am 

Panel on New Methods 
for Music Analysis 
Room: Salon Vallarta D 

Baqueiro-Victorin, Erik & Emil Awad (Escuela Superior 
de Artes de Yucatán, Mérida, & Universidad Veracruzana, 
Xalapa): “Dramatic Time and Rhythmic Transformations on 
Elliott Carter’s Shard”. 

Gareth Loy (Gareth, Incorporated): “Music, Expectation, 
and Information Theory”. 

Mariana Montiel (Georgia State University, Atlanta): 
“Manuel M. Ponce’s piano Sonata No. 2 (1916): An Analysis 
Using Signature Transformations”. 

Emilio Erandu (Departamento de Matemáticas – CUCEI, 
Universidad de Guadalajara, Guadalajara): “A Group for 
Pitch Sequences Representation with Emphasis in Debussy’s 
Music”. 

12:00 – 14:00 



 10

 

am 
Panel 2 on 
Dynamical Systems 
Room: Agave 

Gérard Assayag (IRCAM, CNRS, UPMC, Paris): “Creative 
Dynamics of Composed and Improvised Interaction”. 

Gabriel Pareyon & Silvia Pina-Romero (Universidad de 
Guadalajara): “Phase Synchronization Analysis as Fingerprint 
Classifier for the Teponaztli’s Timbral Features”. 

Mark Reybrouck (University of Leuven): “The Musical 
Experience between Measurement and Computation: from 
Symbolic Description to Morphodynamical Approach”. 

Roberto Cabezas, Edmar Soria & Roberto Morales-
Manzanares (UNAM & Universidad de Guanajuato): 
“Dynamical Virtual Sounding Networks: An Algorithmic 
Compositional Structure Based on Graph Theory and 
Cellular Automata”. 

12:00 – 14:00 

Break Lunch 14:00 – 16:00 

Parallel sessions  16:00 – 18:00 

Panel 2 on Logic, Algebra 
and Algorithmics 
Room: Salon Vallarta D 

Miguel Angel Cruz-Pérez (Escuela de Laudería – INBA, 
Querétaro): “Set Theory and its use for Logical Construction 
of Musical Scales”. 

Tsubasa Tanaka & Kouichi Fujii (Tokyo University of the 
Arts & NTT DATA Mathematical Systems, Tokyo): 
“Melodic Pattern Segmentation of Polyphonic Music as a Set 
Partitioning Problem”. 

Jason Yust (Boston University School of Music): “Restoring 
the Structural Status of Keys through DFT Phase Space”. 

Carlos de Lemos Almada (Universidade Federal do Rio de 
Janeiro, UFRJ): “Gödel-vector and Gödel-address as Tools 
for Genealogical Determination of Genetically-Produced 
Musical Variants”. 

16:00 – 18:00 

Panel 2 on 
Gestural Theories 
Room: Agave 

Mauro Herrera-Machuca (PMDM – UNAM): 
“Configuring the Mapping of Movement Attributes for the 
Transmission of Meaning Through Electroacoustic Music”. 

Jaime Lobato-Cardoso & Pablo Padilla-Longoria 
(IIMAS – UNAM): “Models and Algorithms for Music 
Generated by Physiological Processes”. 

Martin Norgaard (Georgia State University, Atlanta): “How 
Learned Patterns Allow Artist-Level Improvisers to Focus on 
Planning and Interaction During Improvisation”. 

Fernando Zalamea (Universidad Nacional de Colombia): 
“Mazzola, Galois, Riemann, Peirce and Merleau-Ponty: A 
Triadic, Spatial Framework for Gesture Theory”. 

16:00 – 18:00 

Friday 28 

pm 

Special panel (2): 
“Mathematics and 
Aesthetics in Julian 
Carrillo’s (1875–1965) 
Work”. 

Room: Oficina 

Juan Sebastian Lach Lau (Conservatorio de las Rosas): 
“Compositional research into the logics of pitch-distance and 
the timbral facet of harmony in Julián Carrillo’s Leyes de 
Metamorfosis Musicales (Laws of Musical Metamorphoses)”. 

Gabriel Pareyon (CENIDIM): “Carrillo’s vs. Novaro’s 
Tuning Systems Nested within the Arnold Tongues”. 

Santiago Rovira-Plancarte (Faculty of Sciences, UNAM): 
“Julián Carrillo’s Microtonal Counterpoint”. 

16:00 – 17:30 
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Break 
18:00 

Place: Rhythms Hilton’s 
Lounge. 

Colleagues informal meeting (only for the Hilton’s guests). 
18:00 – 19:30 

SHUTTLE BUS to the 
University Campus Transportation to the concert. 19:30 – 20:00 

Concert 
Place: Auditorio Cifuentes 
Lemus, CUC – Universidad de 
Guadalajara 

Mike Winter (electronics):concert with recent compositions. 

Samuel Vriezen (piano):concert with Tom Johnson’s Chord 
Catalogue (1986) and Vriezen’s answer Within Fourths/Within 
Fifths (2006). 

20:00 – 22:00 

Friday 28 eve 

SHUTTLE BUS to the 
Hilton Resort PV Transportation back to the Hilton. 22:00 – 22:30 

Plenary lecture V 
Room: Salon Vallarta C 

Thomas Noll (Escola Superior de Musica de Catalunya, 
Barcelona): “The Sense of Subdominant: A Fregean 
Perspective on Music-Theoretical Conceptualization”. 

10:00 – 11:00 

Coffee break 11:00 – 11:30 

 am 

Panel on 
Modern Geometry and 
Topology 

Room: Salon Vallarta C 

Micho Durdevich (Institute of Mathematics, UNAM): 
“Music of Quantum Circles”. 

Jaime Lobato-Cardoso & Juan Antonio Martínez-Rojas 
(ENM – UNAM & Departamento de Teoría de la Señal y 
Comunicaciones, Universidad de Alcalá, Madrid): “Topos 
Echóchromas Hórou: the Place of Timbre of Space”. 

Juan Sebastián Lach-Lau (Conservatorio de las Rosas): 
“Proportion, Perception, Speculation: Relationship between 
Numbers and Music in the Construction of a Contemporary 
Pythagoreanism”. 

11:30 – 14:00 

Break Lunch 14:00 – 16:00 

Parallel sessions  16:00 – 18:00 

 
 
 

Saturday 29 

pm 

Panel 3 on Logic, Algebra 
and Algorithmics 
Room: Salon Vallarta D 

Franck Jedrzejewski (CEA, Paris): “Algebraic 
Combinatorics on Modes”. 
Iván Paz (Departament de Llenguatges i Sistemes 
Informatics, Technical University of Catalonia): “A Fuzzy 
Logic Approach of High Level Musical Features for 
Automated Composition Systems”. 
Julian Rohrhuber & Juan Sebastián Lach-Lau (Institut 
Fuer Musik Und Medien, Robert Schumann Hochschule 
(Duesseldorf) & Conservatorio de las Rosas, Morelia): 
“Generic Additive Synthesis? Hints from the Early 
Foundational Crisis in Mathematics for Experiments in the 
Ontology of Sound”. 
Michael Winter (University of Southern California & 
Wolfram Research, Champaign, IL): “On Minimal Change 
Codes for Generating Music”. 

16:00 – 18:00 
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pm 
Panel 3 on 
Dynamical Systems 
Room: Agave 

Mattia G. Bergomi (IRCAM, Paris): “Dynamics in Modern 
Music Analysis”. 

Edmar Soria, Roberto Cabezas & Roberto Morales-
Manzanares (UNAM & Universidad de Guanajuato): “Sonus 
Geometria: A Theoretical Classification Model of 
Electroacoustic Concepts Based on Fundamentals of 
Topologic Dynamics”. 

E. Gerardo Mendizabal-Ruiz (Departamento de Ciencias 
Computacionales – CUCEI, Universidad de Guadalajara): “A 
Computational Tool for Image Sound Synthesizing”. 

Goretti Paredes-Bárcenas & Jesús A. Torres (Escuela de 
Laudería – INBA, Querétaro): “Comparison of Empirical 
and Specific Methods to Evaluate if the Construction of Free 
Plates of a Violin are Already Finished”. 

16:00 – 18:00 

 

Special panel (3): 
“Mathematics and 
Aesthetics in Julian 
Carrillo’s (1875–1965) 
Work”. 
Room: Oficina 

Roque Alarcón-Guerrero (Faculty of Engineering, UNAM): 
“Mixed Mathematics: Documental Sources of Music, 
Medicine and Mathematics in Ignacio Bartolache’s Works 
and Life”. 

Mariana Híjar-Guevara (Facultad de Filosofía y Letras, 
UNAM): “Notes on the Aesthetic Dimensions of the Sound 
13 Theory”. 

Lidia Ader (Center for New Technology in the Arts “Art-
parkING” & Nikolay Rimsky-Korsakov’s Apartment and 
Museum, Saint Petersburg): “Sound Wars at the Turn of 
Epochs”. 

16:00 – 17:30 

Break 18:00 

Place: Rhythms Hilton’s 
Lounge. 

Colleagues informal meeting (only for the Hilton’s guests). 

18:00 – 19:30 

Spare time 19:30 – 20:00 

CLOSING CEREMONY 
 

 20:00 – 22:00 

Place: 
Salon Vallarta C (at the Hilton’s 
Convention Center) 

Noah Jordan (guitar): program with experimental music. 

Octavio Agustín Aquino, David López Caamal & 
Axel Álvarez (guitars): Mexican and international repertoire. 

Mario García Hurtado (guitar): program with Julian 
Carrillo’s music in quarter tones. 

 

Formal closure Words of the ICMM president and the Scientific – 
Organizing Committee representative 22:00 – 22:15 

Saturday 29 

eve 

Special guests dinner 
(only for the Hilton’s guests; registration and pre-payment required for this event). 

22:30 – 00:00 

Sunday 30 am Departure early to 13:00 
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Lecturers by alphabetical order 
(please note that lectures accepted for the special panel on Julian Carrillo 

and microtonality are listed on a separate table below this one). 

Name Institution Title of the submitted paper 

Agustín-Aquino, 
 Octavio A. 

Universidad de la Cañada, 
Oaxaca 

“Computational and Combinatorial Aspects of 
Counterpoint Theory” 

Almada, Carlos de Lemos Universidade Federal do Rio de 
Janeiro (UFRJ) 

“Gödel-vector and Gödel-address as Tools for 
Genealogical Determination 

of Genetically-Produced Musical Variants” 

Amiot, Emmanuel 

Institut de Recherche et 
Coordination 

Acoustique/Musique 
(IRCAM, Paris) 

“Viewing diverse musical features in Fourier Space: a 
survey” 

Arias, Juan Sebastián Universidad Nacional de 
Colombia, Bogotá 

“Gestures on Locales and Localic Topoi” 
 

Assayag, Gérard 

Institut de Recherche et 
Coordination 

Acoustique/Musique 
(IRCAM, Paris) 

“Creative Dynamics of Composed and Improvised 
Interaction” 

Baqueiro-Victorin, Erik & 
Emil Awad 

Escuela Superior de Artes de 
Yucatán (Mérida, Yuc.) 

& Universidad Veracruzana 
(Xalapa, Ver.) 

“Dramatic Time and Rhythmic Transformations on Elliott 
Carter’s Shard” 

Barlow, Clarence University of California, 
Santa Barbara 

“On the Structural and the Abstract in my Compositional 
Work” 

Bergomi, Mattia G. IRCAM, Paris “Dynamics in Modern Music Analysis” 

Cabezas, Roberto, Edmar 
Soria & Roberto Morales-
Manzanares 

UNAM & Universidad de 
Guanajuato 

“Dynamical Virtual Sounding Networks: An Algorithmic 
Compositional 

Structure Based on Graph Theory and Cellular Automata” 

Campos-Arcaraz, Teresa PMDM – UNAM, Mexico City “A Proposal for a Music Writing for the Visually Impaired”

Chávez-Martínez, Yemile 
del Socorro 

Faculty of Sciences, UNAM 
(Mexico City) “Mazzola’s Escher Theorem” 

Chew, Elaine Queen Mary University of 
London 

“The Mechanics of Tipping Points: A Case of Extreme 
Elasticity in Expressive Timing” 

Clampitt, David Ohio State University “Lexicographic Orderings of Modes and Morphisms” 

Cruz-Pérez, Miguel Angel Escuela de Laudería – INBA, 
Querétaro 

“Set Theory and its use for Logical Construction of Musical 
Scales” 

Durdevich, Micho Institute of Mathematics, 
UNAM, Mexico City “Music of Quantum Circles” 
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Erandu, Emilio CUCEI – Universidad de 
Guadalajara 

“A Group for Pitch Sequences Representation with 
Emphasis in Debussy’s Music” 

Fripertinger, Harald & 
Peter Lackner 

Karl-Franzens-Universität 
& Kunst-Universität, Graz “Tone Rows and Tropes” 

Gentil-Nunes, Pauxy 
School of Music, Universidade 

Federal do Rio de Janeiro 
(UFRJ) 

“Partitiogram, Mnet, Vnet and Tnet: Embedded 
Abstractions Inside 

Compositional Games” 

Herrera-Machuca, Mauro PMDM – UNAM, Mexico City 
“Representing Body Gestures Through Sound: Strategies 

for Mapping Body Gestures Focusing on the Transmission 
of Meaning Through Electroacoustic Music Sounds” 

Jedrzejewski, Franck 
 CEA, Paris “Algebraic Combinatorics On Modes” 

Johnson, Tom & Samuel 
Vrizen 

Composers (Paris & 
Amsterdam) “Informal talk between Tom Johnson and Samuel Vriezen”

Lach-Lau, Juan Sebastián Conservatorio de las Rosas 
(Morelia) 

“Proportion, Perception, Speculation: Relationship between 
Numbers and Music in the Construction of a 

Contemporary Pythagoreanism” 

Lluis-Puebla, Emilio Faculty of Sciences, UNAM, 
Mexico City “On the Relationship Between Music and Mathematics” 

Lobato-Cardoso, Jaime & 
Juan Antonio Martínez-
Rojas 

ENM – UNAM & 
Departamento de Teoría de la 

Señal y Comunicaciones, 
Universidad de Alcalá, Madrid 

“Topos Echóchromas Hórou: the Place of Timbre of Space” 

Lobato-Cardoso, Jaime & 
Pablo Padilla-Longoria IIMAS – UNAM, Mexico City “Models and Algorithms for Music Generated by 

Physiological Processes” 

Loy, Gareth Gareth, Incorporated 
(California) “Music, Expectation, and Information Theory” 

Mathias-Motta, Carlos Universidade Federal 
Fluminense, Niterói (Brazil) 

“Project DRUMMATH: Rhythms that Build Meaning in 
Mathematical Concepts for the Visually Impaired” 

Mazzola, Guerino 
University of Minnesota 
& ICMM 2014 Honorific 

president 

“Gestural Dynamics in Modulation—A Musical String 
Theory” 

Mendizabal-Ruiz, E. 
Gerardo 

CUCEI, Universidad de 
Guadalajara “A Computational Tool for Image Sound Synthesizing” 

Montiel, Mariana Georgia State University, 
Atlanta 

“Manuel M. Ponce’s piano Sonata No. 2 (1916): An Analysis 
Using Signature Transformations” 

Morales-Manzanares, 
Roberto  

LIM – University of 
Guanajuato 

& PMDM – UNAM, Mexico 
City 

“Compositional Generation of Macro-Structures with 
Dynamical Systems in my Opera Dunaxhii ” 
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Moreira de Sousa, Daniel Universidade Federal do Rio de 
Janeiro (UFRJ) 

“Textural Contour: A Proposal for Textural Hierarchy 
through the Ranking of Partitions Lexset” 

Noll, Thomas ESMUC, Barcelona “The Sense of Subdominant : A Fregean Perspective on 
Music-Theoretical Conceptualization” 

Norgaard, Martin 
 

Georgia State University, 
Atlanta 

“How Learned Patterns Allow Artist-Level Improvisers to 
Focus on Planning and Interaction During Improvisation” 

Paredes-Bárcenas, Goretti 
& Jesús A. Torres 

Escuela de Laudería – INBA, 
Querétaro 

“Comparison of Empirical and Specific Methods to 
Evaluate if the Construction of Free Plates of a Violin are 

Already Finished” 

Pareyon, Gabriel CENIDIM (Mexico City) “A Survey on the Mexican Tradition of Music and 
Mathematics” 

Paz, Iván 
Departament de Llenguatges i 

Sistemes Informatics, Technical 
University of Catalonia 

“A Fuzzy Logic Approach of High Level Musical Features 
for Automated Composition Systems” 

Pina-Romero, Silvia & 
Gabriel Pareyon 

CUCEI – Universidad de 
Guadalajara 

& CENIDIM (Mexico City) 

“Phase Synchronization Analysis as Fingerprint Classifier 
for the Teponaztli’s Timbral Features” 

Reybrouck, Mark University of Leuven (Belgium)
“The Musical Experience between Measurement and 

Computation: from Symbolic Description to 
Morphodynamical Approach” 

Rohrhuber, Julian & Juan 
Sebastián Lach-Lau 

Institut Fuer Musik Und 
Medien, Robert Schumann 

Hochschule (Duesseldorf) & 
Conservatorio de las Rosas 

(Morelia) 

“Generic Additive Synthesis? Hints from the Early 
Foundational Crisis in Mathematics for Experiments in the 

Ontology of Sound.” 

Soria, Edmar, Roberto 
Cabezas & Roberto 
Morales-Manzanares 

UNAM & Universidad de 
Guanajuato 

“Sonus Geometria : A Theoretical Classification Model of 
Electroacoustic Concepts Based on Fundamentals of 

Topology Dynamics” 

Tanaka, Tsubasa & Kouichi 
Fujii 

Tokyo University of the Arts & 
NTT DATA Mathematical 

Systems, Tokyo 

“Melodic Pattern Segmentation of Polyphonic Music as a 
Set Partitioning Problem” 

Vriezen, Samuel Independent researcher & 
composer, Amsterdam “Diagrams, Games and Time” 

Winter, Michael 
University of Southern 

California & Wolfram Research 
(Champaign, IL) 

“On Minimal Change Codes for Generating Music” 

Yust, Jason Boston University School of 
Music 

“Restoring the Structural Status of Keys through DFT 
Phase Space” 

Zalamea, Fernando Universidad Nacional de 
Colombia, Bogotá 

“Mazzola, Galois, Riemann, Peirce and Merleau-Ponty: A 
Triadic, Spatial Framework for Gesture Theory” 
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Lecturers for the special panel on Julian Carrillo: 
 

Name Institution Title of the submitted paper 

Ader, Lidia 

Center for New Technology in 
the Arts “Art-parkING” 

& Nikolay Rimsky-Korsakov’s 
Apartment and Museum, 

Saint Petersburg 

“Sound Wars at the Turn of Epochs” 

Alarcón-Guerrero, Roque* Faculty of Engineering, UNAM 
(Mexico City) 

“Mixed Mathematics: Documental Sources of Music, 
Medicine and Mathematics in Ignacio Bartolache’s 

Works and Life” 

Brotbeck, Roman Bern University of the Arts, 
HKB (Switzerland) 

“An Analytical-Comparative Approach to Carrillo’s 
Metamorphosis and Wyschnegradsky’s Non-Octaviant 

Spaces and their Reverberations” 

García-Hurtado, Mario PMDM – UNAM 
(Mexico City) 

“Julián Carrillo’s Numerical Notation in his Guitar 
Music: Challenges as an Interpreter and Performer” 

Herrera-Armendia, 
Francisco Guillermo & 
Marcos Fajardo-Rendón 

Escuela Normal Superior de 
México (Mexico City) 

“Digital Technology in Julian Carrillo’s Microtonal 
Music Research” 

Híjar-Guevara, Mariana** Facultad de Filosofía y Letras, 
UNAM (Mexico City) 

“Notes on the Aesthetic Dimensions of the Sound 13 
Theory” 

Jordan, Noah Composer and independent 
researcher, Vancouver, Canada.

“Microtonality and the Music of Julian Carrillo from a 
Xenharmonic Perspective” 

Lach-Lau, Juan Sebastián Conservatorio de las Rosas 
(Morelia) 

“Compositional research into the logics of pitch-
distance and the timbral facet of harmony in Julián 

Carrillo’s Leyes de Metamorfosis Musicales (Laws of Musical 
Metamorphoses)” 

Pareyon, Gabriel CENIDIM (Mexico City) “Carrillo’s vs. Novaro’s Tuning Systems Nested within 
the Arnold Tongues” 

Rovira-Plancarte, Santiago Faculty of Sciences, UNAM 
(Mexico City) “Julián Carrillo’s Microtonal Counterpoint” 

* Lecture selected by its historical contents, connected as an antecedent for lecture**. 
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Abstracts by alphabetical order of authors: 

Ader, Lidia 
Center for New Technology in the Arts “Art-parkING” 
and Nikolay Rimsky-Korsakov’s Apartment and Museum, Saint Petersburg 
 
Special panel “Mathematics and Aesthetics in Julian Carrillo’s (1875-1965) work”: 
“Sound Wars at the Turn of Epochs” 
 
Keywords : microtonal music, sound, atomic bomb, 20th century music, experimental music, Zeitgeist. 
 
Abstract : The 20th century very beginning widely established a powerful symbol: the atomic bomb. Scientists studied its nature 
and development discovering contained energy; thereafter revolution went on very quickly. Physicists Ernest Rutherford and 
Frederick Soddy realized that, by breaking down, atoms could turn into new elements. These experiments completely 
changed people’s minds and artists were the first to react. Positivist feelings in the creative environment of that time assigned 
a potential role to the natural-scientific method in the future of artistic development. Musicians, artists and poets addressed 
science in order to find an instrument of cognition or common ground. The principle of division, splitting a cellular whole into 
parts, attracted them. The concept of dissociative identity disorder and a the new term Spaltung unified a whole complex of 
notions: exfoliation, divarication, opposition and fissure. Such fissures marked many different spheres, particularly arts. 
In my paper I will explain microtonality as a notion of division of a sound; a coherent item of separate fields—arts 
particularly. “Everything is analytically decomposing and dividing”, stated philosopher Nikolay Berdyaev in his article The 
crisis of the arts. Simultaneously, Picasso proclaimed a “secret cosmic splitting” as an analytical decomposing process. Great 
thinkers thought that this would help artists to study the object as skeleton and as a solid, hidden matter behind its frame. 
Objective properties of things became a source for inspiration of artists. They operated primary elements of language; for 
example sounds, letters. The whole for them was just a secondary substance, derivative from the basis, bones. In other words, 
they proposed a new trend: dematerialization and subsequent reincarnation of the arts. 
As far as scientific and artistic approaches were appearing swiftly and in remote spheres, it is hardly possible to think about 
succession, but rather of the phenomeon of Zeitgeist, i.e. the genius of the time as described by romantics. Composers in the 
beginning of 20th century proposed several sources for microtonal music: computation, imitation, addition, and enlargement. 
Here I will show how these methods works in music, with its powerful and weakest sides. 
If we compare now some common processes in poetry and music of that time, we can consider that they had some 
corresponding methods: they saw signs of restricting consciousness in principles of organizing a whole. Word and sound were 
studied with the help of an auxiliary system, an artificially constructed structural model. An aim of such experiments was an 
attempt to search new criteria of art and to express it with the help of a language of mathematical formulae. They compared 
phoneme and sound with a physical agent. So, for example, they were understood as an organic body, or a single organism. 
Without this, a word would lack of individual qualities; moreover, a body is a primary cell developed upon any conditions; 
and then without a body a full-value existence and functioning of a word would be impossible, and if we consider its 
limitation by narrow borders, “the strength of it … is only mouldering” . In all manifestation of modernism, the notion of 
“grain” prevails. Artists developed a whole system of agro-musical, -poetical, -art equivalences. Sounds, phonemes and objects 
were all perceived as “grains of a language”. The intention of their attempts was the creation of an algorithm of new 
structural construction; to plan a new ‘periodic system’ of word, sound, object. 
Searching for destruction of integrity in the 20th century, one can divide this idea in two categories that differ by the type of 
material used. On the one hand, there are experiments, in which the division is a system element, base of work, method or 
principle of organization. This is in my opinion a basic function of division. On the other hand, divided elements are used for 
extremely accurate fixation of a text; they exist in art indirectly. They might be called as application tools of division. 
Within basic principles there are several methods, used more often: coloristic and mathematical ones. Methods of 
development of material were formed during the long period of 12-tone temperament practice. However together with the 
introduction of microtones and new equal or not equal temperaments, there was necessity in modernization of traditional 
ways, taking into account new intonation possibilities. This is why there appear experiences of systems of comparison, 
melismatic development on the base of the smallest gradation of a tone, and study of sound spectrum. Using of mathematical 
techniques was due to striving for absolute accuracy and propriety of all experiments. Experiences in the field of 
temperament mostly focused around the 1920s. 
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As for the application of tools, we can look deeper into the experiments in the fields of acoustics and mathematics. 
Computation, calculation of tempered and non-tempered systems was temporary, however they gained success in 1920s 
mainly. Behind all works there was a desire for total accuracy and reasonability of all searches. While linguists discussed 
eternity of sounds in language, composers and scientists tried to build their own alphabet and to solve a problem of sound 
division in music. 
However microtonal music was never accepted as a world trend. It always remained marginal, isolated. Even those 
composers who composed most of their works using microtones, usually marked those pieces by some constant labels: “piece 
for the violin and quarter-tone piano”; “…for 31-tone ensemble”, etc. This was done facing performers and listeners, to gain 
attention and to reject those who do not accept it. 
All this is also noticeable, not only by the distinction in titles regarding the atomic era, but by the musicians’ perception: in 
Georgy Rimsky-Korsakov, for example, when calling “simple” those pieces written in 12-tone system. Another classification 
was given by the director of Universal Edition, Emil Hertzka, in a letter to Donaueschinger Musiktage director Mr. Burkard: 
“Haba’s II. Quartett im Viertelton-System ist allerdings noch nicht erschienen. <…> In wenigen Tagen dürfte Haba’s I. Quartett im Normal 
ton-System erscheinen und ich werde mir erlauben, Ihnen eine Partitur zur Verfügung zu stellen”. For criticists it was clear that “it is still 
too early” to predict how this cult will develop. Even though in the beginning of 20th century, the trend for development was 
accompanied by violent, brutal attacks. The main criticisms were due to the restrictive framework of tonality, and the fear of 
developing music using quartertones. However sound wars did not pass unnoticed. Nowadays it is time to trace its impact in 
the development of music and art in general, to see its path in history conditioning the atoms of future. 
 

References : [1] Brotbeck, R. “Differenzierung und Dissolution. Die mikrotonalen Komponisten Julián Carrillo, Harry Partch 
und Ivan Wyschnegradsky”. Provisional sketch. Feb. 1993. [2] Busoni, F. Entwurf einer neuen Ästhetik der Tonkunst. Trieste, 
1907. [3] Conti, L. Ultracromatiche sensazioni: il microtonalismo in Europa (1840–1940). Lucca: Libreria musicale italiana, 2008. [4] 
Holde, A. “Is There a Future for Quarter-tone Music?”. The Musical Quarterly. 1938. 24 (4): 528–533. [5] Mager, J. 
Vierteltonmusik. Aschaffenburg: Franz Kuthal, 1918. [6] Möllendorf, W. Musik mit Vierteltönen. Erfahrungen am bichromatischen 
Harmonium. Verlag von F.E.C. Leuckart, Leipzig, 1917. [7] Rimsky-Korssakoff, G. “Theorie und praxis der reintonsysteme im 
Sowjet Russland”, Melos. 1928. №. 7, pp. 15–16. [8] Stein, R. H. Zwei Konzertstücke: Für Violoncello und Klavier: op. 26. Neue 
Ausgabe. Berlin: Eisoldt & Rohkrämer, 1909. [9] Vincent, A.-J.-H. Notice sur divers manuscrits grecs relatifs à la musique, comprenant 
une traduction française et des commentaires. Paris: Imprimerie royale, 1847. [10] Wellek, A. “Quarter tones and Progress”. Musical 
Quarterly. 1926. 12 (2): 231–237. [11] Wyschnegradsky, I. “La Musique à quarts de ton”. La revue musicale. 1924. 11, p. 231. [12] 
Busoni, F. 1924 – Staatsbibliothek zu Berlin, Mus. Nachl. F. Busoni BII, 4459. 

Agustín-Aquino, Octavio A. 
Universidad de la Cañada (Teotitlán de Flores Magon, Oaxaca) 
 
PLENARY LECTURE: 

“Computational and Combinatorial Aspects of Counterpoint Theory” 
 
Keywords: counterpoint, strong dichotomy class. 
 
Abstract : The study of strong dichotomy classes (an abstraction for consonances and dissonances) lead to problems in additive 
combinatorics and algorithmic searches whose solution allows us to construct extensions that preserve the contrapuntal 
structure from one space into another, such that their outcome have desirable properties in the injective limit. We will discuss 
some recent advances on these matters, open problems and some consequences for certain issues in counterpoint theory in 
particular, and for mathematical musicology in general. 
 
References : [1] Agustín-Aquino, O.A. “Counterpoint in 2k-tone equal temperament”. Journal of Mathematics and Music 3(3), 153–
164. 2009. [2] Fux, J.J. Gradus ad Parnassum. Johann Peter van Ghelen, Wien. 1725. [3] Mazzola, G. La verité du beau dans la 
musique. Delatour-IRCAM. 2007. [4] Mazzola, G. et al. The Topos of Music: Geometric Logic of Concepts, Theory, and Performance. 
Birkhäuser, Basel. 2002. [5] Sachs, K.J. Der Contrapunctus im 14. und 15. Jahrhundert: Untersuchungen zum Terminus, zur Lehre und zu 
den Quellen. Beihefte zum Archiv für Musikwissenschaft, vol. 13. Steiner, Wiesbaden. 1974. 
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Alarcón-Guerrero, Roque 
Faculty of Engineering, UNAM (Mexico City) 
 
Special panel “Mathematics and Aesthetics in Julian Carrillo’s (1875-1965) work”: 
“Mixed Mathematics: Documental Sources of Music, Medicine and Mathematics in Ignacio 
Bartolache’s Works and Life” 
 
Keywords : Bartolache, music, mathematics, history, Enlightenment. 
 
Abstract : This paper focuses on the life and works of José Ignacio Bartolache, a seminal figure of New Spain’s enlightenment 
age. He published Mathematical lessons, the first of its type, in 1769, and Flying Mercury, a magazine that covered issues about 
chemistry, medicine and physics. He was completely devoted to the spreading of scientific knowledge and made of 
mathematics the cornerstone for the development of the other sciences. In Mathematical lessons he called Music and Acoustics 
as “mixed mathematics” by their dependence to the principles and rules of thinking of the mathematical methods. 
This paper makes hypothetical connections between Bartolache’s life and works with the ideas displayed in the books listed in 
the inventory of his goods. As a doctor he believed that music could serve as a remedy against public diseases. In Flying 
Mercury he used musical terms as metaphors for the description of scientific instruments. In Mathematical Lessons he stated that 
music was formed by pleasant sounds and as a musician maybe he enjoyed the mixture of music theory (counterpoint and 
harmony), medicine (theory of human humours) and mathematics (logarithms) that one can find in Pablo Nasarre’s Musical 
fragments (1693) and Musical school according the modern practice (1724) along with Rameau’s Treatise of harmony (1722) and Universal 
music or universal principles of music (1717) by Pedro de Ulloa. 
A learned and practical musician in his personal library there were musical scores composed by Giussepe Valentini, Leonardo 
Leo, an opera by Corelli, a flute sonata by Locatelli and a sketch of Ignacio Jerusalem’s First Lamentation for Holy Wednesday 
that reveals us the influence of the Italian school of the 18th century in the musical taste of the New Spain. He knew how to 
play the guitar thanks to Santiago de Murcia’s An explanation for playing the part with the guitar (1714) and the recorder in 
Cayetano Echeverría’s A book with lessons and sonecitos for recorder. At his home there were a cello with its bow, a transverse flute, 
a theorbo, an ‘orchestra’ (a mechanical music device) and a bandora. Bartolache’s spiritual life had a musical mirror in the Art 
of plainsong (1705) by Francisco Montanos, Joseph de Torres’ The practical art of organ’s singing (1705), and a Musical catechism by 
José Antonio Onofre de la Cadena (1763). 
This research is supported by musical iconographic sources and its aim is set a background for Bartolache’s works. Living in a 
time of shifting paradigms, José Ignacio Bartolache was a man between the worlds of faith against science, and in the 
crossroads of art, mathematics and music regarded both as entertainment and a source of knowledge. 
 
References : [1] Bartolache, J.I. Lecciones matemáticas (1769); Ulloa, P. de. Música universal o principios universales de la música (1717); 
Nasarre, P. Fragmentos músicos (1693). 

Almada, Carlos de Lemos 
Universidade Federal do Rio de Janeiro, UFRJ (Rio de Janeiro) 
 
“Gödel-vector and Gödel-address as Tools for Genealogical Determination of Genetically-Produced 
Musical Variants” 
 
Keywords : Gödel-vector, Gödel-address, genetic Algorithms, developing variation, Grundgestalt. 
 
Abstract : The present paper integrates a broad research project which aims at a systematical production of musical variants 
through employment of genetic algorithms. The structure of this system is theoretically grounded on the principles of 
developing variation and Grundgestalt, originally elaborated by Arnold Schoenberg. Both principles, in turn, derive from a 
conception based on the trend of Organicism, which exerted a strong influence on the musical creation of Romantic Austro-
German composers in 19th Century (MEYER, 1989, p.190). According to this conception, a musical piece must be created as 
an organic form, like a tree from a seed (which represents approximately the concept of Grundgestalt), through an continuous 
growing process, based essentially on sequential and/or recursive application of variation techniques, which can yield, at least 
in an idealized case, all the needed melodic material for the piece. Such a maximally economic procedure corresponds 



 20

essentially to the developing variation principle.1 Based on a conceptual and terminological corpus derived from a former 
model elaborated for analytical finalities in the first phase of the research,2 a new approach was established, specifically 
dedicated to the organic composition. For this purpose, it was created a genetic algorithm complex (the geneMus complex, or 
gM) formed by four computational complementary and sequential modules, which are destined to the systematical 
production of lineages of variants.3 In the first module of gM, a brief monophonic musical fragment – the Grundgestalt, or, in 
the research’s terminology, the axiom of the system – becomes a referential form for the production of a first generation of 
abstract variants (i.e. rhythmic and intervallic separate transformations, named as geno-theorems, or gT’s) by application of some 
rules of production (the correspondent term in the system for the developing variation techniques). The first generation’s gT’s, in 
turn, become referential forms for the production of a second generation of gT’s, by recursive and/or sequential application 
of the same precedent rules of production. The process can then be indefinitely replicated, resulting in extensive lineages of 
abstract derived forms. In the second module, pairs of gT’s are crossed over, forming concrete musical unities, named as 
pheno-theorems (pT’s). The third module is responsible for the concatenation of two or more pT’s into large and more complex 
musical structures, labeled as axiomatic groups (axG’s). Each axG produced can be considered as a “patriarch” of a specific 
lineage of variants (group-theorems, or thG’s), which are produced in the fourth module, by sequential and/or recursive 
application of new rules of production (including some “mutational” ones, i.e., affecting only random selected elements), 
through at most seven generations (this number was arbitrarily chosen). An indispensable need that arose in the research was 
a precise mean for classifying the thG’s produced in the system in such a way that their respective “genealogical” position and 
derivative order could be adequately preserved and retrieved when desired. For this purpose, it was created the Gödel-vector 
(Gv), with seven entries, each one representing one of the possible generations for the groups (i.e., a generic category that 
encompasses both axG’s or thG’s). The sequence of integers in the seven Gv’s entries of a given group represent not only its 
own order of appearance, but also those of all its predecessors (zeros indicate none descents). Be, for example, the following 
groups and their respective Gv’s: (a) <1 0 0 0 0 0 0> and (b) <2 1 3 1 4 1 0>. Gv (a) represents the first produced axG (or 
else, the patriarch of lineage 1), since the zeros indicate it has no descents in the subsequent six generations. Gv (b) 
corresponds to a thG of fifth generation. Its genealogy description is somewhat complex (it must be read from right to left): 
first descent (of generation 5) of the fourth descent (of generation 4) of the first descent (of generation 3) of the third descent 
(of generation 2) of the first descent (of generation 1) of the second axG. A special algorithm was designed to translate a Gv 
into a univocal index – the Gödel-address (Ga) – which represents concisely, as a unique integer, the precise genealogical 
identification of the considered group. It is calculated in the following manner: the numbers present in the seven entries of a 
Gv become exponents of the ordered seven first prime numbers (2, 3, 5, 7, 11, 13, 17). The product of these factors is equal 
to the correspondent Ga. This procedure is based on that one elaborated by the Austrian mathematician Kurt Gödel (whose 
name is used for label both concepts, Gv and Ga) for obtaining the Gödel Number corresponding to a given logical 
proposition in the Number Theory (NAGEL & NEWMAN, 2001). Considering the two Gv’s above exemplified, the 
calculation of their respective Ga’s proceeds as follow:  
(a) <1 0 0 0 0 0 0> → Gaa = 21.30.50.70.110.130.170 = 2;  
(b) <2 1 3 1 4 1 0> → Gab = 22.31.53.71.114.131.170 = 1,998,496,500.  
Therefore, there exists a proportional relationship between the genealogical complexity of a given group and the size of its 
respective Ga. The inverse process (i.e., the retrieval of a Gv from a given Ga) is easily realized with a simple factoring 
algorithm: the exponents of the ordered prime factors obtained become precisely the vector content. Another algorithm is 
employed for classifying the thG’s according to their genealogy and to subordinate them to their respective axG’s, thus 
constituting a a large matrix named LEXICON. 
 
References : [1] Almada, C. de L. “O Sistema–Gr de composição musical baseada nos princípios de variação progressiva e 
Grundgestalt ”. Música e Linguagem, v. 2, n. 1, p.1–16, 2013a. [2] Almada, C. de L. “GENEMUS: ferramenta computacional para 
composição com Grundgestalt e variação progressiva”. In: XXIII Encontro Anual da Anppom, 2013. Natal. Anais… Natal: 
UFRN, 2013b. [3] Almada, C. de L. “Simbologia e hereditariedade na formação de uma Grundgestalt: a primeira das Quatro 
Canções Op.2 de Berg”. Per Musi – Revista Acadêmica de Música, Belo Horizonte, n.27, 2013c, p.75–88. [4] Almada, C. de L. 
“Aplicações composicionais de um modelo analítico para variação progressiva e Grundgestalt ”, Opus, v.18, n. 1, 2012, p.127–
152. [5] Almada, C. de L. “Derivação temática a partir da Grundgestalt da Sonata para Piano op.1, de Alban Berg”. In: II 
Encontro Internacional de Teoria e Análise Musical. Anais… São Paulo: Unesp–Usp–Unicamp, 2011a. 1 CD–ROM (11 pp.). 
[6] Almada, C. de L. “A variação progressiva aplicada na geração de ideias temáticas”. In: II Simpósio Internacional de 
Musicologia. Anais… Rio de Janeiro: UFRJ, 2011b, p.79–90, 2011. [7] Carpenter, P. “Grundgestalt as tonal function”. Music 
Theory Spectrum, vol. 5, 1983, p. 15–38. [8] Dahlhaus, C. What is ‘developing variation’? In (C. Dahlhaus), Schoenberg and the New 

                                                 
1 For more detailed information about the principles of  Grundgestalt and developing variation, see, among others, Carpenter 
(1983), Frisch (1984), Dahlhaus (1990), and Dudeque (2005). 
2 For some published papers with analytical model studies, see Almada (2011a; 2011b; 2013c). 
3 For some published papers concerning this compositional approach, see Almada (2012; 2013a; 2013b). 
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Music theory and analysis in the writings of Arnold Schoenberg (1874–1951). Aldershot: Ashgate Publishings, 2005. [10] Frisch, W. 
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Amiot, Emmanuel 
Institut de Recherche et Coordination Acoustique/Musique 
(IRCAM, Paris) 
 
PLENARY LECTURE: 

“Viewing Diverse Musical Features in Fourier Space: A Survey” 
 
Keywords : Fourier, DFT, musical scales, rhythmic tilings, even distribution, homometry. 
 
Abstract : In the last decade, Discrete Fourier Transform (or DFT) of musical structures has come to the fore in several 
domains and appears to be one the most promising tools available to researchers in music theory.  
From David Lewin’s very first paper (1959) and its revival by Ian Quinn (2005) it came to be known that the magnitude of 
Fourier coefficients tells much about the shape of musical structure, be it a scale, chord, or (periodic) rhythm: distributions 
with equal magnitude of Fourier coefficients are homometric, a (slight) generalization of isometric which was first studied in 
crystallography. 
Maximality of some Fourier coefficients (saliency) characterizes very special scales, such as maximally even distributions. On 
the other hand, flat distributions of these magnitudes can be shown to correspond with uniform intervalic distributions. This 
type of analysis can be extended to labelled collections, enabling for instance comparisons of tunings. Furthermore, nil 
Fourier coefficients are highly organized and play a vital role in the theory of tilings of the line, aka rhythmic canons. 
Finally the cutting edge research on the other component of Fourier coefficients, their phases, appear to model some aspects 
of tonal music with unforeseen accuracy. Some or all of these aspects can be extended from the discrete to the continuous 
domain. 
 
References : [1] Lewin, D. “Intervalic Relations Between Two Collections of Notes”. In : Journal of Music Theory, 3 (1959). [2] 
Agon, C., E. Amiot, M. Andreatta, D. Ghisi & J. Mandereau, “Z-relation and homometry in musical distributions and 
Discrete phase retrieval in musical structures”. JMM 2011 (2) (T&F). [3] Amiot, E. & W. Sethares, “An Algebra for Periodic 
Rhythms and Scales”, JMM 5 (3) 2011 (T&F). [4] Amiot, E. “Discrete Fourier Transform and Bach’s Good Temperament”, 
Music Theory Online, 2009, 2. [5] Amiot, E. & J. Rahn (Eds.). Perspectives of New Music, special issue 49 (2) on Tiling Rhythmic 
Canons. [6] Quinn, I. “General Equal-Tempered Harmony”, Perspectives of New Music 44/2–45/1 (2006–2007). [7] Amiot, E. 
“The Torii of Phases”. Proceedings of SMCM, Montreal, 2013 (Springer). [8] Yust, J. “Schubert’s Harmonic Language and the 
Tonnetz as a Continuous Geometry”, SMT 2013. [9] Callender, C. “Continuous Harmonic Spaces”, Journal of Music Theory, 51 
(2). 2007. 

Arias, Juan Sebastián 
Universidad Nacional de Colombia (Bogotá) 
 
“Gestures on Locales and Localic Topoi” 
 
Keywords : Gestures, locales, localic topoi, Grothendieck topos, diamond conjecture. 
 
Abstract : The theory of gestures has meant a revolution for the mathematical music theory established by Guerino Mazzola in 
his famous book Topos of Music [1] in 2002. In several publications, he has presented a solid framework for the definition of 
mathematical gesture from three points of view: music, philosophy and mathematics. This definition is formulated originally 
for topological spaces and topological categories [3]. The iteration of gestures leads to the construction of hypergestures [3], 
using tools from classical homotopy theory. 
In this article we expose a generalization of mathematical gestures on topological spaces introduced by Mazzola in [2], to 
locales and categories of sheaves on locales. In first place, we consider a recapitulation of Mazzola’s construction in terms of 
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exponentials and limits in the category of topological spaces. Secondly, we show how are possible these constructions in the 
category of locales and the category of localic topoi (categories of sheaves on locales), and then we present examples of 
mathematical and musical interest. The constructions of exponentials of locales are based on an article of Hyland [4], and 
Johnstone’s Sketches of an Elephant [5]. The constructions of limits of locales are taken from the book Categorical Foundations [6]. 
The respective constructions in the category of localic topoi are a consequence of the equivalence of this category and the 
category of locales [5]. We want to stress that our general construction of gestures takes into account that of hypergestures. 
Finally, we comment the possible generalizations to sites, Grothendieck topoi and elementary topoi, which are our ongoing 
work. In this way will be discussed subsequent implications on Mazzola’s architecture of mathematical music theory based on 
the topos structure [1], and the diamond conjecture stated on [2]. The emergence of Grothendieck topoi and elementary 
topoi in gesture theory could help to recast the diamond conjecture in an abstract setting, perhaps easier to handle. 
 

References : [1] Mazzola, G. et al., The Topos of Music: Geometric Logic of Concepts, Theory, and Performance, Birkhäuser, Basel, 2002; [2] 
Mazzola, G. and M. Andreatta, “Diagrams, Gestures and Formulae in Music”, Journal for Mathematics and Music, Vol. 1, Nr. 1, 
23–46. 2007; [3] Mazzola, G., “Categorical Gestures, the Diamond Conjecture, Lewin’s Question, and the Hammerklavier 
Sonata”, Journal of Mathematics and Music, Vol. 3, Nr. 1, pp. 31–58. 2009; [4] Hyland, J. M. E., “Function spaces in the category 
of locales”, Lecture Notes in Mathematics Vol. 871, 1981, pp. 264–281. Springer; [5] Johnstone, P.T., Sketches of an Elephant: A 
Topos Theory Compendium, Oxford University Press, 2 Vols., 2002; [6] Pedicchio M.C. and Tholen W. Eds., Categorical 
Foundations: Special Topics in Order, Topology, Algebra, and Sheaf Theory, Encyclopedia of Mathematics and its Applications, 
Cambridge University Press, 2004. 

Assayag, Gérard 
Director, Sciences and Technologies of Music and Sound Laboratory. 
IRCAM, CNRS, UPMC 
 
“Creative Dynamics of Composed and Improvised Interaction” 
 
Keywords : digital intelligence, artificial creativity, creative agents, improvisation, musical formal structures. 
 
Abstract : Until recently, in the field of musical interaction with machines, engineers and researchers have been concerned by 
fast computer computation and reaction —a logical concern considering available machine speeds and complexity of tasks. 
However, instantaneous response is not always the way a musician reacts in a real performance situation. Although decisions 
are being carried out at a precise time, the decision process relies on evaluation of past history, analysis of incoming events 
and anticipation strategies. Therefore, not only can it take some time to come to a decision, but part of this decision can also 
be to postpone action to a later time. This process involves time and memory at different scales, just as music composition 
does, and cannot be fully apprehended just by conventional signal and event processing. 
In order to foster realistic and artistically interesting behaviors of digital interactive systems, and communicate with them in a 
humanized way, we wish to combine several means: machine listening —extracting high level features from the signal and 
turning them into significant symbolic units; machine learning —discovering and assimilating on the fly intelligent schemes 
by listening to actual performers; stylistic simulation —elaborating a consistent model of style through mathematical 
formalization; symbolic music representation —as formalized representations connecting to organized musical thinking, 
analysis and composition. These tools cooperate in effect to define a multi-level memory model underlying a discovery and 
learning process that contributes to the emergence of a creative musical agent. 
In the Music Representation Team, after OpenMusic, a standard for computer assisted composition and mathemusical tools, 
we have designed OMax, an interactive machine improvisation environment which explores this new interaction schemes. It 
creates a cooperation between heterogeneous components specialized in real-time audio signal processing, high level music 
representations and formal knowledge structures. This environment learns and plays on the fly in live setups and is used in 
many artistic and musical performances. 
Starting from OMax, we show recent trends of our research on interactive creative agents capable of adequacy and relevance 
by connecting instant contextual listening to corpus based knowledge, with longer term investigation and decision processes 
allowing to refer to larger-scale structures and scenarios. We call this scheme Symbolic Interaction. Creative Symbolic 
Interaction brings together the advantages one can get from the worlds of interactive real-time computing (the mathematics 
of signal) and intelligent, content-level analysis and processing (the mathematics of symbolic forms), in order to enhance and 
humanize man-machine communication. Performers improvising along with Symbolic Interaction systems experiment a 
unique artistic situation where they interact with a musical (and possibly visual) agent which develops itself in its own ways 
while keeping in style with the user. It aims at defining a new artificial creativity paradigm in computer music, and extends to 
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other fields as well : The idea to bring together composition and improvisation through modeling cognitive structures and 
processes is a general idea that makes sense in many artistic and non-artistic domains. It is a decision-making paradigm where 
a strategy makes its way weaving decisions step after step, either by relating to an overall structural determinism, or by 
jumping in an “improvised” way and generate a surprise. 
This kind of “improvisation” strategy is observed in the living world, and might be one aspect of intelligence as a way to cope 
effectively with the unnown, it may serve as a productive model for artificial music creativity. 
 
References : [1] Allombert, A., M. Desainte-Catherine, G. Assayag, “Towards an Hybrid Temporal Paradigm for Musical 
Composition and Performance: The Case of Musical Interpretation”, Computer Music Journal, 2013, 2 (37): 61–72. [2] Lévy, B., 
G. Bloch, G. Assayag. “Marxist Dialectics”. In Proceedings of the International Conference On New Interfaces for Musical Expression, pp. 
137–140, 2012 [3] Assayag, G., C. Truchet (Eds.) “Constraint Programming in Music”, Constraint Programming in Music, ISTE 
Ltd and John Wiley & Sons Inc, 256 pp., 2011 [4] Cont, A., S. Dubnov, G. Assayag. “On the Information Geometry of 
Audio Streams with Applications to Similarity Computing”, IEEE Transactions on Audio, Speech, and Language Processing, Aug. 
2011, 19 (1): 837-846, 2011. [5] Dubnov, S., G. Assayag, A. Cont. “Audio Oracle Analysis of Musical Information Rate”, 
Proceedings of IEEE Semantic Computing Conference, ICSC2011, Palo Alto, Cal., 2011, pp. 567–571. [6] Cont, A., G. Assayag, S. 
Dubnov, G. Bloch. “Interaction with Machine Improvisation”, The Structure of Style (K. Burns, S. Argamon, S. Dubnov Eds.), 
Springer Verlag, pp. 219-246, 2010. [7] Assayag, G. & A. Gerzso (Eds.) New Computational Paradigms for Computer Music, 
Delatour France / Ircam-Centre Pompidou Publisher, 186 p., 2009. [8] Assayag G. & G. Bloch. “Navigating the Oracle: A 
Heuristic Approach”. In International Computer Music Conference, Vol. 7, pp. 405–412, 2007. [9] Assayag G. & S. Dubnov (2004). 
“Using factor oracles for machine improvisation”. Soft Computing, 8 (9): 604–610. [10] Assayag, G., J.F. Rodrigues & H. 
Feichtinger (Eds.) Mathematic and Music, Springer-Verlag, Berlin, 291p., 2002. 
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“Dramatic Time and Rhythmic Transformations on Elliott Carter’s Shard” 
 
Keywords : Elliott Carter, transformational theory, tempo modulation, musical form, time-point classes. 
 
Abstract : Since the second half of the 20th century, the concept of musical time represents a fundamental research theme on 
music theory. The main goal of this paper is to formally analyze Shard (1997) for solo guitar, by Elliott Carter (1908–2012), 
with special focus on time domain. 
With the aim of generating a theory of musical form on Carter’s repertoire, we built modulation and phase-shift networks 
among certain tempi which evinces rhythmic relationships at different structural levels. Those transformations are 
underpinned on a pair of Generalized Intervals Systems (GIS) generated in this analytical process. 

1. Rhythmic Transformational Theory 

Definition 1. Let be a any time-point (a real number) and d its duration (a positive real number). We define the a-class 
module d as the family of all time-points which are situated from the reference point a in a distance of a multiple of d, i.e., 

[a]d = {x : x – a = nd, for some integer n}.   (1) 

Definition 2. We define the tempo generated by the time-span (a, d ) as the family of each time-span (x, y) ∈ TMSPS whose 
first component (the time-point x) belongs to [a]d , 

τ (a, d ) = {(x, y ) :|x [a]d }.    (2) 

Definition 3. Let be T  the family of all tempi characterized as definition 2. We define a transformation 

i M : T  × T  → r+     

as 

i M (τ(a, x), τ(b, y)) = ,
y
x      (3) 

for any τ(a, x) and τ(b, y) in T . In this case we say that τ(a, x) is transformed to τ(b, y) through the modulation    . 

Theorem 1. (T , (r+, · ), i M) is a GIS. 
y
x
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Definition 4. Let be d ∈ r+ a fixed duration and T  (d ) the family of all tempi whose generators posses d as its duration. We 
define a function 

i P : T  (d )× T  (d ) → rd      

as 

i P (τ(a, d ), τ(b, d )) = [b – a]d     (4) 

for any τ(a, d ) and τ(b, d ) in T (d ). In this case, we say that τ(a, d ) is transformed to τ(b, d ) through the phase-shift [b – a]d . 

Theorem 2. For every duration d ∈ r+, (T  (d ), rd , i P ) is a GIS. 
 
2. Tempi Transformational Networks 

Table 2 evinces how d 0 and d 1 are graphically represented through bars 1 to 15 whereas figure 1 depicts the two kinds of tempi 
transformations above mentioned from τ(0,4d 0) to τ(d 0,4d 0) at different levels: 

Modulation: τ(0,4d 0) is transformed to τ(Y1(D), 5d 1) through a 8/15 interval, i.e., a local rallentando occurs at the 
presentation of the all-interval tetrachord Y1(D) = {D, E♭, F, A} on bar 8. The corresponding inverse transformation 
(15/8) occurs from bar 8 to 15 returning to the original tempo in terms of velocity. 

Phase-shift: τ(0,4d 0) is transformed to τ(d 0,4d 0) through a [d 0]4d 0 displacement (notated simply as d 0), i.e., a local change 
of the thesis (strong beat) is presented in this passage which connects the all-trichord hexachords H(D) and H(E♭). 

Would the original thesis be perceived again? How do the different tempi modulations contribute to this hypothetical objective? 

 

Dramatic Time and Rhythm Transformations on Elliott Carter’s Shard : 

Table 1 Representations of d 0, d 0. 

 

 
Fig. 1 Rhythmic transformations on Shard, bars 1–15. 

References : [1] Carter, E. (2002). Harmony Book. Carl Fischer. [2] Carter, E. (1960). “Shop Talk by an American Composer”, The 
Musical Quarterly, 46(2),189-201. [3] Goldman, R. (1943) “The Music of Elliott Carter”, The Musical Quarterly, 43(2), 151-170. 
[4] Knussen, S. (1996). Elliott Carter in interview, Tempo, New Series, no. 197, 1996, 2–5. [5] Lewin, D. (1987). Generalized 
Musical Intervals and Transformations, Yale University Press. [6] Link, J. (1994). “Long-range polyrhythms in Elliott Carter's 
Recent Music”, doctoral dissertation, City University of New York. [7] Poudrier, E. (2012). Multiple temporalities: Speed, beat cues, 
and beat tracking in Carter's instrumental music. Presented at Society of Music Theory Congress, New Orleans. [8]. Uno, Y. (1996). 
The Tempo-Span GIS as a Measure of Continuity in Elliott Carter’s Eight Pieces for Four Timpani, Integral, no. 10, 53–91. 
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Barlow, Clarence 
University of California, Santa Barbara 
 
PLENARY LECTURE: 

“On the Structural and the Abstract in my Compositional Work” 
 
Abstract : From 1959 to 1969 I composed music as most others do and have done – by direct transfererence from the 
imagination to a musical instrument (in my case the piano) and from there to a written score. During this period, I found 
myself relying increasingly on traditionally structured techniques such as canon, fugue, dodecaphony, serialism and 
electronics. In 1970 I was struck for the first time by a mathematical rule-based idea for an ensemble piece, which 
necessitated my learning to program a computer. Since then I have composed over fifty works (half my total output) with 
computer help – works for piano, organ, chamber ensemble, orchestra and electronics. Of these fifty-odd pieces, nine are 
partially and sometimes wholly based on abstract, exclusively mathematical principles:  
Cheltrovype (1968-71) for cello, trombone, vibraphone and percussion, in a part of which the melody instruments each follow a 
probabilistic pitch distribution system based on an exponential curve, a sine curve and a parabola, 
Sinophony II (1969-72) for eight-channel electronics, in which theoretically infinitely many but factually about 800 sine tones 
move along predetermined sinusoidal paths in the domains of pitch, amplitude and duration,  
Stochroma (1972) for solo piano, a conceptual piano piece in which pitch, loudness and duration are probabilistically 
determined, allowing duration and dynamic values to exponentially diverge (as powers of 0.5) from a central value to rare but 
great extremes (durations for instance range in seconds from the yocto to the yotta range and beyond in both directions),  
Bachanal for Jim Tenney and Tom Johnson (1990) for solo piano based on the digits of the natural number series in binary form, 
Piano Concerto #2 (1961-1998) for piano and orchestra, in a part of which different groups of instruments perform 
simultaneous but independent accelerandi and decelerandi deriving from the shape of an inverted cosine, 
Les Ciseaux de Tom Johnson (1998) for chamber ensemble based on the successive positions of six sets of three points derived 
from the name of the dedicatee, each set moving along a differently sized circle, 
“...or a cherish’d bard...” (1999) for solo piano based on the rising gradient of repeated, theoretically infinitely long note chains 
derived in pitch from the spelling and in rhythm from the hexadecimal interpretation of the dedicatee’s name, 
Approximating Pi (2007) for up to 16 channels of electronics based on the numerical digits of convergences to the constant π 
as generated by the Madhava-Leibniz series, 
Songbird’s Hour (2011) for one channel of electronic sound based on my own music composition system of mathematically 
interpolating phase-contigual sine curve segments between the samples of a digitized sound wave in order to interpret the 
sound wave as a pitch sequence transposable into the audible range. 
This talk will describe these nine pieces or relevant sections of them in varying detail. 
 

Bergomi, Mattia G. 
Université Pierre et Marie Curie – IRCAM (Music Representation Team) 
Università degli Studi di Milano – LIM 
 
“Dynamics in Music” 
 
Abstract : In the first part of this work we will study a geometrization of the Tonnetz. The space is naturally isotrpopic. 
Dissonance gives a method to introduce preferred directions in a simplicial representation on the Tonnetz. In the second 
part, starting from continuous musical models, we introduce a braids-theoretical interpretation of voice leading theory, 
focusing our attention on voice-crossing analysis. 

Discrete Models: the Tonnetz and the dissonance 
The Oettingen Riemann Tonnetz [Euler, 1739], i.e. the Tonnetz whose directions are minor third, major third and perfect 
fourth intervals, denoted T (3 ,4 ,5) is often described as a torus. We can always unglue the torus in a triangular lattice, and 
find a minimal set of vertices such that the whole chromatic scaleV  is represented. See figure 1. This kind of representation 
can be used on the standard generalization of the Tonnetz given by: 

T  = 
⎭
⎬
⎫

⎩
⎨
⎧

=∑
=

3

1
321 12:),,(

k
kiiiiT .    (1) 
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In this generalized context it is not always possible to find the whole chromatic scale in the set of vertices of T . It suffices 
that ik is not a generator of ℤ/12ℤ for k ∈ {1,2,3}. Even in these cases it is possible to find S ⊂V  which are musically 
relevant: in Tonnetz like T (2 ,2 ,8) one can find the whole tone scale. [See: Bigo et al., 2013 for further details]. 
The idea is to consider the Tonnetz as a 2-dimensional simplicial complex embedded in r2 whose 2-simplices are the 
triangles (representing major and minor triads in the case of T (3 ,4 ,5)) and whose vertices are labeled with the name of the 
notes p they represented in the lattice. Obviously, it is always possible to extend this definition to T . 
We introduce a third dimension which represents a kind of gravitational potential, which shall be associated to each vertex v 
of the simplicial complex. We do this choosing a musical object M (a chord or a scale in this context) and computing the 
dissonance d (M , v ) of each note represented on T  respect to this object. There exist several models to compute dissonance. 
Some of them has been tested. [See: Temperley, 1999, Plomp and Steeneken, 2005, Plomp and Levelt, 2005, Dillon, 2013]. 

Let M  = {p 1, … , p n} be a set of pitches, and S = {v 1, … , v n} the notes represented on T . The height function h : V ⊂ r2 → 

r3, maps the vertex v = (x , y ) ∈ T  ↦ v* = (x , y , d (M , p ) ). 
If M  is a C major triad and T  = T (3 ,4 ,5) we obtain the complex depicted in figure 2. 

Analysis 
From a topological point of view the complexes we defined are always contractible. However their 0-skeleton can be thought 
as a point cloud in r3. A natural way of studying point clouds is persistent homology. [See: Verri et al., 1993, Edelsbrunner et 
al., 2002, Ghrist, 2008]. 
The components to investigate a point cloud via persistent homology are a filtration function, a good way to represent the life 
and death process of n -dimensional holes, and a distance to compare the results. 
Different filtration functions have been used and information is represented both with barcodes and corner points diagram. 
[See: Carlsson and Zomorodian, 2009]. 
 
 

 
 
 
 
 
 
 
Fig. 1 The representation 
of a portion of T (3 ,4 ,5) as 
a 1-skeleton of a simplicial 
complex. 
 
 
 
 
 
 
 
 
 
 
Fig. 2 The major triads on the 
Oettingen Riemann Tonnetz. 
In this picture triangles (2- 
faces) have been added to 
represents 3-notes chords. 
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Continuous Models: a braid-theoretical approach to voice leading theory 
results about the space of chords (see [Tymoczko, 2011]). Chords’ space are deeply linked to configuration spaces, see figure 
3 and 4. Thus it is natural to try to give an interpretation of voice leading in terms of braids. Since the fundamental group of 
Tn/S n is always equal to z, we made some investigation among different manifolds and quotient spaces to find the most 
suitable environment to represent voice leading through braids. In addition we give a representation of voice crossing, 
analyzing its importance in orchestration. 
We also discuss some interesting geometrical remarks on Estrada’s combinohedron. Partitions of 12 find an interesting 
representation in terms of simplices. For instance the orbits of the action of the symmetric group of order n on the n 
components partition of 12 are surprisingly relevant in terms of standard harmony: the augmented triad which is fixed by the 
action of S 3 is the barycenter of a 2-simplex, it is surrounded by the hexagon of major and minor triads. This, in turn, is 
surrounded by a triangle of diminished triads. [See: Ramırez Alfonsin & Romero, 2002, Estrada, 1994]. 

Acknowledgement 
These are the results of joint researches with Stefano Baldan, Moreno Andreatta (Tonnetz and Dissonance), Riccardo 
Jadanza, Alessandro Portaluri and Alexandre Popoff (braids approach to the space of chords) and Giulio Masetti 
(combinohedron’s geometry). 
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Special panel “Mathematics and Aesthetics in Julian Carrillo’s (1875-1965) work”: 
“An Analytical-Comparative Approach to Carrillo's Metamorphosis and Wyschnegradsky's Non-
Octaviant Spaces and their Reverberations” 
 
Keywords: Julián Carrillo, Ivan Wyschnegradsky, Jean-Etienne Marie, microtonal pianos, musical metamorphosis, non-
Euclidian geometry, non-octaviant spaces, third tone, sixth tone, twelfth tone 
 
Abstract : Carrillo was a rather narcissistic person. He considered himself to be the greatest revolutionist of music history, as 
the first and only inventor of microtones and as the saver and multiplicator of European music. As with almost all narcissistic 
composers, Carrillo had no real followers. His theories did not make a great impact and his instruments, above all his 15 
special pianos, have remained mute in Mexico for almost fifty years. By contrast, more than 80 pieces have been composed 
for the two instruments that Carrillo bequeathed to his French friend Jean-Etienne Marie. Especially the 16th-tone piano, with 
its possibility of realizing a glissando on the piano, has a particular fascination for European composers. 
During Carrillo’s lifetime only two musicians, far away from Mexico, were interested in his microtonal pianos: Jean-Etienne 
Marie and Ivan Wyschnegradsky. For the Russian born Wyschnegradsky living in Paris, the encounter with Carrillo’s pianos 
at the World exposition 1958 in Brussels represented a creative choc. He had just developed his idea of non-octaviant spaces, 
a completely new concept in harmonic thinking implying revolutionary considerations of the musical space. The low volume 
of Carrillo’s pianos in combination with their strong differentiation of intervals inspired Wyschnegradsy to enlarge his musical 
systems. He began to compose three pieces for the Carrillo pianos in third tone, sixth tone and twelfth tone in which he 
explored new musical realms.  
In this lecture I will analyze how Wyschnegradsky improved his own compositional system, which was largely influenced by 
Non-Euclidian Geometry, in confrontation with Carrillo’s concepts of musical metamorphosis. As friend of both Carrillo and 
Wyschnegradsky, Jean-Etienne Marie conciliates the two systems of metamorphosis and non-octaviant spaces thus sparking 
many of the reverberations that have influenced European music since Carrillos death in 1965. 
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“Dynamical Virtual Sounding Networks: An Algorithmic Compositional Structure Based on Graph 
Theory and Cellular Automata” 
 
Keywords : algorithmic composition, electroacoustic music, graph tehory, cellular automata, complex networks. 
 
Abstract : In this work we will present a method for algorithmic composition based on a different approach than the 
traditional mapping found in most of actual artworks based on algorithmic processes, proposing a new perspective that 
includes a theoretical math background and a more complex mapping process. A Rhythmic Space RS is defined as the set of 
rhythmic musical structures provided with an specific sum and multiplication operations. Elements from that space are then 
operated as real numbers with the rhythmic element quarter defined to be as the neutral multiplicative. This set shows no 
commutativity, neither distributive or associative laws under the operations previously defined due to the very inner musical 
properties of the rhythmic elements. In this way, rhythmic functions can be defined according to the set of operations and so, 
basic rhythmic structures can be transformed into a more complex process as a consequence of these functions. 
As a practical application for composition, this paper shows a complete algorithmic process based on graph theory and 
cellular automata topics. An initial directed graph C of size n along with its adjacency matrix is defined, where each vertex is 
mapped to a previously defined rhythmic function so the graph turns into a dynamic complex rhythmic network. The 
adjacency matrix is then reinterpreted as a 1D or 2D cellular automata state, so, further transformations of this matrix can be 
performed using any rule at any time. A reconfiguration of the graph takes place each time and so multiples and different 
rhythmic structures are generated each time step. 
As will be shown in the piece Natividad generated entirely by this model. This application is not restricted to rhythmic aims 
and once the general structure is defined, any sound transformation can be executed including pitch, timbrical properties, 
dynamic loudness, etc. 
 
References : [1] Wolfram, Stephen (1994). Cellular Automata and Complexity: Collected Papers. Addison-Wesley. [2] Wolfram, 
Stephen (2002). A New Kind of Science. Wolfram Media. Inc. [3] Maarten van Steen (2010). An Introduction to Graph Theory and 
Complex Networks. VU University. [4] Beyls, P. (2004) Cellular Automata Mapping Procedures. Proceedings of the 2004 
International Computer Music Conference. [5] Barrat, Alain, Marc Barthélemy, Alessandro Vespignani (2008). Dynamical 
Processes on Complex Networks. Cambridge University Press. 
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“A Proposal for a Music Writing for the Visually Impaired” 
 
Keywords : Braille music, transcription, music literacy. 
 
Abstract : Braille Musicography is the most used system by blind people for reading and writing music in the world. It is a 
transcription from the conventional music notation to a system with symbols generated by a matrix of raised dots of two 
columns and three rows. It shows two difficulties which make it a hard tool for the blind musicians: 1) the number of music 
symbols largely exceeds the number of possible Braille combinations; and 2) it is a linear system representing a bidimensional 
system. 



 29

The main purpose of this work is to propose a set of symbols that will be the base of a system for reading and writing music 
for the blind people, as an alternative to Braille Musicography. Different types of symbols will be tested, among them 
symbols generated by a matrix different from the one with 3 lines and 2 rows which is generally used. It is important to notice 
that our fingertips have a delimited zone in which the density of receptors is high and allows a clear reading of a symbol. 
Outside this zone, the produced mental image is not clear and makes the reading tiresome and difficult. The symbols of the 
system proposed in a later stage of this work will have to respect these dimensions. Some other physiological and cognitive 
considerations have to be taken into account, in order to obtain a useful system. If music notation is conceived as a regular 
language, then it is possible to establish a relationship between conventional notation and Braille Musicography, being able to 
solve some of the difficulties of the last and making transcription more efficient and maybe totally automatic. Based in all 
these results, and considering the experience and ideas of the blind people who use music notation in Braille, a new system 
will be proposed, looking for a more efficient system than the actual Braille Musicography. 
The main purpose of this work is to propose a set of symbols that will be the base of a system for reading and writing music 
for the blind, as an alternative to Braille Musicography. Different types of symbols will be tested, among them symbols 
generated by a matrix different from the one with 3 lines and 2 rows which is generally used.  
It is important to notice that the most sensitive zone of our fingers is the fingertip. Two kinds of receptors, Meissner’s 
corpuscles and Merkel’s disk, are in charge of tactile acuity given their characteristics (Gardner et al., 2000 : 431–437). There 
are more of these receptors in the fingertip than in the rest of the hand (ibid. : 437). The area where this happens is 
approximately 25 mm2 (Detorakis, 2014 : 8). The density of these receptors increases drastically from the palm to the finger 
tips with two abrupt increases (Johansson, 1977 : 284), delimiting a very sensitive zone as shown in Figure 1. This allows a 
clear reading of a Braille symbol (Gardner et al., 2000 : 435). Outside this zone, the fast reading of the symbol produces a 
blurred image, making the reading tiresome and difficult. 

Figure 1. Taken from Gardner et al., 2000 : 434. 

The symbols of the system that will be proposed in future stages of this work will have to respect these dimensions in order 
to provide a useful system. The dimensions are respected by a standard Braille box as described in the document by BANA 
“Size and Spacing of Braille Characters”. 
If music notation is considered as a regular language, then it is possible to establish a relation between conventional notation 
and Braille Musicography, being able to solve some of the difficulties of the last and making transcription more efficient and 
maybe totally automatic. 
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“Mazzola’s Escher Theorem” 
 
Keywords : Escher Theorem, topological categories, categorical gesture, digraphs, limit, colimit. 
 
Abstract : Along the history of performance research there are two different unrelated approaches: the empirical and the 
philosophical one. From the empirical point of view, the quantitative aspects of performance are treated, and parameters 
need to describe performance as they are specied in a numerical way. Instead, from the philosophical standpoint, qualitative 
aspects and thoughts expressed through performance are treated. This two threads of performance research were disjoint 
during a lot of time up to 1992, when the research group of Guerino Mazzola started investigations about a general theory of 
performance. 
The goal of this talk is to overview Mazzola’s Escher Theorem for topological categories of hypergestures. This result states 
the existence of a canonical isomorphism 

 
where Γ, Δ are digraphs and K is is a topological category. During the talk, the concepts needed to prove the Escher Theorem 
will be detailed and reviewed, all of which are used in several research papers by Professor Guerino Mazzola. The theorem at 
hand is needed for the development of the theoretical apparatus that Mazzola seeks to realize, and it leads us to a better 
understanding of the concept of categorical gesture, as used in his work about a general (mathematical) Theory of Performance. 
The talk will be complemented with further comments on the Theory of Performance, from interviews to conductor Wilhelm 
Furtwangler, and conductor and composer Pierre Boulez. 

Acknowledgement 
This talk is a report of my undergraduate thesis under Lluis-Puebla’s direction, which is based on two research papers of 
Guerino Mazzola. 
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“The Mechanics of Tipping Points: A Case of Extreme Elasticity in Expressive Timing” 
 
Keywords: expressive performance, timing and tempo, extreme elasticity, mathematical models. 
 
Abstract : Musical timing forms the essence of expressive performance. Expressive timing serves to delineate structures and 
draw attention to musical features [5]. As in the case of stand-up comedy, the right timing can make the difference between a 
riveting performance and a lackluster one. As illustration of the importance of musical timing, a simple exercise can show that 
playing a piece with appropriately shaped timing, albeit with many wrong notes, is preferable to playing all the right notes 
with broken timing. 

Research on expressive timing has centered on aspects of phrasing, which are primarily defined by a rise and fall in local 
tempo or dynamics. Repp [7] showed that these tempo phrase arcs can be described by quadratic functions; Repp [8] further 
demonstrated that transitions from one tempo to the next can be modeled by cubic functions. Kinematic approaches to 
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modeling tempo showed that a physical body coming to a stop better approximated ritardandi [3]. Taking the locomotive 
analogy a step further, Chew et al. [2] created a driving interface for the shaping of tempo trajectories. 

While much work has focused on the ebb and flow of tempo that mark phrasing, little work addresses gestural forms of 
timing deviations, which can exhibit far more extreme degrees of elasticity. In 2010, Rajagopal observed that local tempo 
variations at the start of Gould’s 1977 and Pogorelich’s 1986 performances of Bach’s Saraband (BWV 807) resembled a 
damped harmonic oscillator, thus suggesting that, beyond modeling beats and meter [4,6], oscillators can also be used to 
describe tempo fluctuations. 

In [1], borrowing from physics, I introduced the tipping point analogy for musical timing. A musical tipping point is a 
massive distortion of the tempo, a musical hyperbole, which extends well beyond the normal pulse and meter. It can be 
defined as a timeless moment of suspended motion, beyond which a small perturbation will tip the balance and set in motion 
the return of the pulse. Relatively rare over the course of a piece, tipping points form the defining moments of a 
performance. 

I shall describe the mechanics of these tipping points: how timing at tipping points can be executed and modeled 
mathematically, taking into account parameters of pitch and loudness; and, when tipping points can be employed—how they 
play on expectations both schematic (such as familiarity with tonal conventions) and veridical (such as knowledge of a well-
known theme). 

This work deepens existing, and makes concrete new, connections between music and motion. It raises the question of 
whether the music-motion link results from the use of movement metaphors to shape performance, or from tempo 
variations possessing the characteristics of low order differential equations. 
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Timing Microstructure in Schumann’s “Traumerei”. Haskins Laboratories Status Report on Speech Research, SR-111/112, 227–260. [8] 
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“Lexicographic Orderings of Modes and Morphisms” 
 
Keywords : Christoffel words, combinatorics on words, lexicographic order, modes, Sturmian morphisms, well-formed scales. 
 
Abstract : The first part of this paper will be a brief and, one hopes, gentle introduction to the theory of the modes of well-
formed scales, within the framework of algebraic combinatorics on words, specifically musical modes encoded as members of 
the monoid of words A* over a two-letter alphabet A, and the monoid of special Sturmian morphisms that act on A*. This 
material was exposed for a music theory audience in Clampitt and Noll 2011 (Music Theory Online vol. 17.1). 
The second part of the paper presents new work, relating lexicographic orderings of words encoding the modes of (non-
degenerate) well-formed scales (especially the canonical examples, the diatonic modes) and lexicographic orderings of the 
special Sturmian morphisms associated with the modes, to the musical scale and circle-of-fifths orderings. In particular, 
departing from the 2013 Montréal SMCM paper by Noll and Montiel (in Springer LNCS vol. 7937), the lexicographic 
orderings are related to Zarlino’s (1571) re-ordering of the six authentic Glarean (1547) diatonic modes and the circle-of-
fifths folding words related to the authentic modes via the duality referred to in Clampitt and Noll 2011 as the twisted 
adjoint. 
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Scale Theory Concepts and Notations 
Scale theory derives its mathematical character from the fact that musical scales are generally periodic phenomena. Most 
often the period is the musical octave (associated with the frequency ratio 2:1). One may then identify a given scale with a set 
of fundamental frequencies fk , 1 = f 0  < f 1  < … < f N – 1  < 2, N a positive integer, and, taking base-2 logarithms, with 
elements 0 = s 0 < s 1 < … < s N – 1  < 1, where sk = log 2( fk ). We call the elements sk the scale steps, and the differences (sj – si ) 
mod 1 the specific intervals, or the specifc interval sizes. The specifc intervals (s i + 1 – s i ) mod 1 for 0 ≤ i < N, i + 1 reduced modulo 
N in the case i = N – 1, are defined to be the (specific) step intervals. 
Already the existence of periodicity and other possible symmetries suggest the application of mathematics: the Discrete 
Fourier Transform, for example, or group theory models. Both approaches have been fruitful; here we begin with very 
constrained groups (the building blocks of abelian groups), moving to very unconstrained non-abelian groups (free groups 
with two generators), and to free monoids and their morphisms. The first candidate is the cyclic group modulo N. 
The first conceptual step in scale theory is to identify the scale steps with their index numbers, i.e., with the mod N residues 
zN, and define the generic intervals by differences between index numbers, again the set zN, which may be understood to be an 
additive group with addition modulo N, z = N z. We also call these numbers the lengths of generic intervals. The generic 
intervals associated with length 1 are the generic step intervals, and the generic interval lengths capture the notion of scale-
step measure, as in the musical nomenclature “2nds, 3rds,” etc. A double description of musical intervals via generic and 
specific intervals is the approach to scale theory taken by a number of theorists, initiated formally by Clough in [1] and 
continued by Clough and Myerson in [2]. Scales in which each non-zero (mod N ) generic interval corresponds to a fixed 
number of specific interval sizes are of particular musical interest. The cases where each generic interval corresponds to one 
specific interval, i.e., where the generic/specific distinction is collapsed, are equal divisions of the octave. The cases where 
each non-zero generic interval corresponds to exactly two specific interval sizes are a privileged class which are shown in [2] 
to be equivalent to scales having the Cardinality Equals Variety property, and are shown in [3] to be equivalent to non-
degenerate well-formed scales (to be defined below). The class of scales for which each non-zero generic interval corresponds 
to three specific intervals is a much larger one, but it is shown in [4] that all pairwise well-formed scales belong to this class. 
We will be concerned here with the second type, the non-degenerate well-formed scales. 
Let S = { sk|0 = s0 < s1 < … < sN–1 < 1} as above. If there exists a real number 0 < θ < 1 such that for each k from 0 to     
N – 1 we have sk = (nθ ) mod 1 for some 0 ≤ n ≤ N – 1, we say that S is generated, and θ is a generator for S. 
By the pigeonhole principle, we have one of the elements sj = 1 × θ, so one of the specific interval sizes in the scale S is the 
number that generates S; we will refer to it as the generating interval. It follows that 1 – θ is also a generator for S whenever θ is. 
Let S be generated with generator θ. We may then write S = {0, (n1 θ ) mod1, …, (nN – 1θ ) mod 1}. Then S is defined to be a 
well-formed scale if the mapping of index numbers of elements of S onto the elements ni is an automorphism of Z= NZ. 

That is, S is well-formed if there exists a fixed integer m, 0 < m ≤ N – 1, such that Ω : Z  / NZ ↦ Z  / NZ: z ↦ nz ≡ mz 
(mod N). We say that S is degenerate well-formed if all of the step intervals are of the same size; non-degenerate well-formed otherwise. 
But here we will take well-formed to mean non-degenerate well-formed. 
From this definition flow a series of equivalences and entailments, relating the cardinality of the scale (N ), the multiplicities 
of the step intervals (p and q = N – p ), and the automorphism Ω. Carey and Clampitt showed in [5],[6] that the cardinalities 
of well-formed scales are denominators of (semi-)convergents in the continued fraction representation of the generator θ . 
(NB: Semi-convergents are also called intermediate convergents ; best approximations from one side.) There is thus a hierarchy of 
well-formed scales of increasing cardinalities, finite if θ is rational, infinite if θ is irrational [5]. As noted above, S is non-
degenerate well-formed if and only if all of its non-zero generic intervals are associated with two specific interval sizes. In 
particular, the step intervals come in two specific sizes, a and b, with multiplicities q and p, respectively, which are coprime 
with N [3]. It is demonstrated in [3] that the generic length of a generating interval θ (or 1 – θ ) is the multiplicative inverse of 
one of the step multiplicities. That is, if θ = sj , then as a generic interval it has length j, and we have jp ≡ 1 (mod N ). Which 
of the multiplicities p or q is the multiplicative inverse and which the negative of the multiplicative inverse depends on 
whether N is the denominator of an even or odd (semi-)convergent to θ in its continued fraction representation. It follows 
that the value m that defines the characterizing automorphism Ω is p or its negative, depending again on whether N is the 
denominator of an even or odd (semi-)convergent. 
Since all scale structure is determined by the integer values N and p , the next step in the theory is to consider equivalence 
classes of well-formed scales. Let WF(N, p ) be the class of all well-formed scales with cardinality N and multiplicity p of 
specific step interval b. It is evident that these classes partition the universe of well-formed scales and are thus equivalence 
classes. A representative of WF(N, p ) may be taken to be a string of a’s and b ’s representing the step intervals in S, that we 
call a step-interval pattern. For example, the usual diatonic scale, belonging to the class WF(7,2), represents the class with the 
step-interval pattern string, or “word”, aaabaab. 
As a mode of the usual diatonic scale, this corresponds to the Lydian mode, where a represents a whole step and b a half step. 
As a white-note scale, it would be the mode on F: F G A B C D E (F’). This exemplifies the canonical step-interval pattern, 
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when S is in the form of a generated set. This is the form the usual diatonic would take if it were presented as the generated 
set S with generator “perfect fifth.” 
We might take the interval size of the perfect fifth to be log 2  , corresponding to the frequency ratio 3/2, but for ease of 
computation, let us take the equal-tempered perfect fifth,   . Then S has the form SETdia = {0, 1/6, 1/3, 1/2, 7/12, 3/4, 
11/12}, where the elements are sk = ((2k) mod 7)(     mod 1), for k = 0, 1,… , 6. 

We now turn our attention from well-formed scales to their modes, that is, cyclic permutations of step-interval patterns. 
These may be understood to be derived by shifting the initial point s0 of S to another element of S. For example, if in the 
usual diatonic in its canonical Lydian mode form, as above, we subtract the value of the generator     from each value of 
SETdia, we have the familiar major scale form, {0, 1/6, 1/3, 5/12, 7/12, 3/4, 11/12}, that gives rise to the new step-interval 
pattern aabaaab. Now we consider each class WF(N, p) to include and have as representatives the cyclic permutations 
(rotations, conjugates) of the canonical step-interval pattern. It is at this point that algebraic combinatorics on words (word 
theory) becomes a useful perspective. 
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“Set Theory and its use for Logical Construction of Musical Scales” 
 
Abstract : A lot is said about the relationships between music and mathematics. However very few times those relationships 
are given in clear and applied cases. At the Luthiers School (Escuela de Laudería – INBA, Querétaro, Qro.) these connections 
between science and art have been useful. Understanding mathematics and music theory as a building theory that shows links 
and connections with art and science implies understanding lutherie as an applied art, related to science and history. At the 
beginning of the career, the relationships between science and music stands out as part of instrument design, involving 
therefore theories of physical shapes and mathematical resources. In this field I identified the easiest way for students to 
understand set theory and mathematical functions related with music theory. Another case is by building modal scales and 
their relatives by the function previously given; fine connections can be made by associating major scales with their minor 
relatives. 
The aim of this proposal is to point out essential matters in which set theory and mathematical functions match with music 
theory as a proposal to grant holistic knowledge of music and mathematics. In set theory “a function or map from X to Y is 
an association between the members of the sets. More precisely, for every element of X there is a unique element of Y” 
(Houston, 2009). By simple analogy we can explain relative scales in set theory, as we define any musical scale as a given set. 
In traditional Western tonal music, one set may represent major scales and another set, minor scales. The way or map to relate 
a major scale to a minor scale, is our function. This map is needed to go from the minor scale to the major one, and for that 
we have to take the third sound of our minor scale (third grade) and use it as the first grade of the major scale. According to 
tonal tradition, what makes a major scale is the distance between two tones from the first grade to the third. In the minor 
scale the distance is of one and a half tone. But if we think on the relative scales as subsets, then we have a different kind of 
relationship and a different map to relate them. 
Using the easiest way to explain the diatonic scale without using too much musical theory, we will start in C to build, by fifths 
a five sound scale, the so called pentatonic scale: C G D A E. These letters (pitches) are ordered without considering if we 
passed an octave, so the set is of the seven pitches scales built by perfect fifths. Let us find out how we can build the modal 
scales by perfect fifths. Transposing a few sounds an octave to order them in a simple octave, we have: 
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We can go further adding two more perfect fifths in three different ways to the original five letters we use to get our 
pentatonic scale, by (1) adding the two fifths on the right (higher); (2) adding the two fifths on the left (lower); (3) adding one 
fifth to the right and one to the left. Following this method, we build the six modal scales which will relate by a specific 
function. For the first case, which is to add two perfect fifths to the original five pitch scale used to build the pentatonic scale, 
higher to the five tones, we have—ordering them and adding the octave (A´)—the Dorian mode A BC D E F#G A’ by the 
function 

 

For the second case, adding the two perfect fifths on the left, in descendent way from the lowest pitch and ordering them in 
the same octave, Abb C D EF G A’ by this function resulting in the Phrygian mode: 

 
A third mode is built by adding a perfect fifth higher and a perfect fifth lower to our original 5 pitches from where we got the 
pentatonic scale. The result is the Aeolian mode A BC D EF G A’. This is the set of the scales made of perfect fifths.  
Can we either think of these scales as two different sets (the major scales set, and the minor scales set), or should we consider 
them as a subset one from each other? In music theory this point of view would provide an advance for understanding tonal 
music as a function of shifts from major to minor (or vice-versa), or as a whole scale function with different grammars for its 
grades and tonal relationships. Thus let’s try to think of set theory as a way we will take for understanding music theory. 
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Abstract : We illustrate the basic ideas and principles of quantum geometry by considering mutually complementary quantum 
realizations of circles. It is quite amazing that such a simple geometrical object as the circle, provides a rich illustrative 
playground for an entire array of purely quantum phenomena. On the other hand, the ancient Pythagorean musical scales 
naturally lead to a simple quantum circle. In this lecture we explore different musical scales, their mathematical generalization 
and formalization, and their possible quantum-geometric foundations. In this conceptual framework, we outline a 
diagramatical-categorical formulation for a quantum theory of symmetry, and further explore interesting musical connections 
and interpretations. 

1. Introduction 
Quantum geometry mirrors the ideas of quantum physics, into the realm of geometrical spaces and their transformations. But 
quantum spaces, the analogies of atoms, mollecules and quantum systems of physics in general, exhibit a nature essentially 
different from their classical counterparts. They are not understandable in terms of points, parts, or local neighbourhoods. In 
general, these concepts do not apply at all to quantum spaces. However the entire fabric of space is conceived as the one 
indivisible whole. 
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There is something profoundly quantum in all music. A discrete space–the skeleton hosting any musical score, morphs into a 
true musical form, only after being symbiotically enveloped by a geometry of sound. And this geometry is inherently quantum, as 
it connects the points of the discrete underlying structure, invalidating the difference between now, then, here and there; thus 
creating an irreducible continuum for a piece of music: continuous discreteness and discrete continuity. 
All this inherently promotes simplicity in thinking, as we are forced to look for some deeper structure, going far beyond the 
parts, points, local neighbourhoods, and fragmented classical geometrical views. One such a way of thinking, transcending the 
nature of mathematical realms, is harmony: to look at symmetries—the transformational modes of things—and understanding 
the mathematical creatures in terms of them. Conceptual roots of this thinking are found in the Erlangen Program by Felix 
Klein. 
Circles are children of simplicity. A principal geometrical realization of an infinite symmetry group. The idea of circle is 
observed in repetitions. Any continual change, movement, transformation, in which there is something invariant before and 
after, naturally leads to the idea of circle. In music such is the concept of octave. It leads to a circle representing the geometrical 
space of abstract tonalities. A more detailed geometrical structure is given by a musical scale, interpretable as further ‘musical’ 
symmetries of the circle. 
The aim of this lecture is to illustrate how these symmetries of the circle lead to its own projected quantum realizations, and 
the complementary view of extending the circle into a quantum counterpart. These examples are actually extremely rich in 
their internal structure. They reflect the spectrum of all principal new phenomena of quantum geometry. In particular, the 
quantum circles are quantum groups in a proper sense. We shall briefly talk about a general diagrammatical and categorical 
formulation of symmetry, which naturally includes our quantum circles and their quantum siblings, as well as the variety of all 
classical structures. 
 

 
 
 

2. Quantum Circles 
The Pythagorean musical scale invites us to consider the quotients of the classical circle    over a free action of the infinite 
cyclic group of integers z, generated by a single irrational rotation. The space of equivalence classes has a direct musical 
interpretation, as the space of abstract tonality classes within a single octave. In the case of Pythagoreans, we have two 
principal frequency transformations: the octave itself, given by doubling the frequency ω ↦ 2ω; and the perfect fifth, given by the 
shift ω ↦ 3ω. If we consider the frequency range as covering all positive real numbers r+, and pass to natural logarithms, 
then the multiplication becomes addition and frequency range is the whole r. The octave space is given by r/z ln(2). 
Within this space, the addition of ln(3) acts as a symmetry. By transforming [r ] ↦ exp(2irπ/ln(2)) we can identify the octave 
space with the circle     of the unitary complex numbers. In terms of this identification, the Pythagorean perfect fifth becomes 
a multiplication by exp(2iπ  ln(3)/ln(2)) which represents an irrational rotation, by the angle φ + 2π  = 2π  ln(3)/ln(2). 
Another possibility is to consider rational rotations. In terms of complex numbers, it corresponds to roots of unity, say 
primitive solutions of the equation zn = 1 for n ≥ 2. In this case the action of z factorizes to the action of the cyclic group of 
order n on the circle. And the resulting factor space is again a classical circle. So our tonality space is given by an n-fold 
covering of      by     . Musical scales based on equal temperament provide a realization of such a rational structure, and n is 
the number of semitones. In terms of the original frequencies, the simplest movement is given by ω ↦ 21/nω 
However, in the irrational case, there exist infinitely many connectable pitch values, dense in the octave space. In other 
words, every orbit of the action is dense in the circle      . . The resulting orbit decomposition is ergodic in the sense that there 
exist no no-trivial decomposition of the circle, into two disjoint measurable sets consisting of whole orbits each. One of them 
always has measure 0 and hence another is of the normalized measure one. To put it differently, there exist no no-trivial 
measure theory on the orbit space Q . It exhibits a kind of intrinsic wholeness. And if there is no measuring in Q, then there is 
simply no hope to build, in the spirit of classical geometry, any meaningful higher-level theory. 
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So Q is consisting of points, however the points are behaving quite wildly, and there is no any effective and operational 
separability between them. Exactly the same kind of phenomenon we encounter in studying certain aperiodic tilings of the 
Euclidian plane. A paradigmatic example is given by the space of isomorphism classes of Penrose tilings. There exist 
(uncountably) infinitely many classes, however every two tilings are indistinguishable by comparing their finite regions. Every 
finite region of one tiling is faithfully echoed, and infinitely many times in any other tiling. 
 

 
 
This space can also be described as the quotient space of the full binary sequences space {–, +}N which is the same as the 
Cantor triadic set, by a relation of equivalence identifying sequences which coincide on a complement of a finite subset of N. 
One possibility to deal with such quantum points, is to construct a noncommutative C*-algebra A, which captures the space 
Q in terms of equivalence classes of its irreducible representations. Such an approach is presented in detail in [1]. Another and 
inequivalent approach, is to apply the theory of quantum principal bundles developed in [2], and consider non-trivial 
differential (necessarily quantum, as in music) structures on discrete and extremely disconnected spaces and groups. We 
believe this is more in the spirit of the original Erlangen Program. 
So the rational rotations give us classical circle as the tonality classes space. And irrational rotations produce quantum objects. 
It is interesting to observe that from a purely geometrical perspective, the quantum behaviour is the generic one. Indeed, 
although the rational and irrational unitary complex numbers are intertwined, both being everywhere dense in the circle, the 
roots of unity form a countable and therefore negligible, subset. With probability one,      will choose an infinite covering 
mode, and cast a quantum shadow. 
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“A Group for Pitch Sequences Representation with Emphasis in Debussy’s Music” 
 
Keywords : Group Theory, intervals, concatenation, Debussy, pitch sequences. 
 
Abstract : Through the use of archaic modes and whole-tone or pentatonic scales Debussy cultivated a musical style known as 
impressionism. Here we offer an intuitive way to represent whole-tone musical phrases as elements in impressionist music in 
mathematical terms, as well as other musical phrases with regular intervals elements using a set we named L(Sn ). 

Fix n ∈ N. Let Sn  be the set whose elements sj ,  j ∈ {0,… , n –1}, are sets of intervals of      j semitones, including its octaves; 
in other words, sj  = {…, –12 +     j semitones,      j semitones,      j semitones, …}. Then we have the sets S1 , S2 , S3 , S4 , S6  
and S12  whose elements are equivalence classes. We shall name elements in Sn  using letters in ascending order starting from 
the letter a, S1  = {a = [0]}, S2  = {a = [0], b =       }, …, S6  = {a = [0], b =       , c =        , d =         , e =        ,  f =        }.  

Now we define the operation + as the usual modular arithmetic, that is [x ] + [ y ] = [x  + y ], e.g. a, b, f ∈ S6 , b + f = [2 
semitones + 10 semitones] = [12 semitones] = a . We see that (Sn , +) is a group with a being the identity element. 

Now lets define g : Sn  → zn , g (sj ) = [  j ],  j ∈ {0,… , n –1}; it is clear that g is an isomorphism from Sn  → zn . 

As an example we show S4  using middle C (i.e. C4) as reference for counting intervals:  

where each bar corresponds to each element in S4 .  

Let L(Sn ) be an infinite set of infinite strings with elements in Sn  concatenated in every possible order, also, each string has an 

infinite string of only a to the right; that is, for S2 , aā, bā, abā, ∈ L(S2 ) but also babbababā ∈ L(S2 ). We use over line notation 
to indicate repeating and never ending a. For convenience we will not write the infinite a string that goes with every element 
in L(Sn ), this way babbababā will be just babbabab, also aa will be just a. This way we can represent pitch sequences as elements 
of L(Sn ); that is representing the movement of the melody by sequences of musical intervals. For instance, the phrase 

                                                                is seen as the element abab in L(S2 ). 

 
We note that having ā to the right does mean nothing to music since it is the identity element in Sn  concatenated infinitely 
times. It does not add intervals. It is trivial to note that every sequence of sounds, as long as it uses some or all of the 12 
pitches (disregarding enharmonics) in Western music, can be seen in L(S12) since this set includes all possible sequence of 
intervals. This is how abbbbb ∈ L(S6) is seen in a staff: 
 
This is the whole-tone scale starting at C4, the other whole-tone scale can be generated in reference to C#4, every possible 
sequence of sounds using this scales can be seen as an element of L(S6). 
As an example, we take a look at the first two bars of Prelude No. 2, Voiles, from first book of preludes by Claude Debussy: 
 

 
* Ernest-Guter Heinemann. Debussy Préludes, Premier Livre. G. Henle Verlag, 1986. 

 

We can represent the upper melody in reference to C4 as e f f f f a f  ∈ L(S6) and the lower melody as c f f f f f f  ∈ L(S6). In this piano 
piece almost every phrase is an element of L(S6). Whole-tone elements are present in much of Debussy’s repertoire. Just to 
mention few examples: everything from Voiles except 6 bars; the solo between english horn and cello at the end of the first 
movement in La mer ; a number of passages in Les images, livre I, for piano solo. 
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Let s, s̀ ∈ L(Sn ), s = [s1][s2] … [sn ] …, s̀ = [ s̀1] [ s̀2] … [s̀n ] … Now we define the ○ operation as a coordinate-wise addition in 
the sense of s ○ s̀ = [s1 + s̀1] [s2 + s̀2] … [sn + s̀n ] … We note that the length of s and s̀ does not matter since every element in 
L(Sn ) has ā to the right, and this means there will always be an a to operate. 
For the last example we look at the first beat of bar no. 31 in Jeux d’eau for solo piano from Maurice Ravel: 

 

Using (L(S6), ○) in reference to C4, the the upper melody 
performed with the right hand, A# A# F# G can be 
represented as the f a eb  element in L(S6); now we 
arbitrarily select f a c e  and operate f a eb  ○ f a c e , and we 
obtain eaa f  wich is the second beat in the same example: 

 
Rafael Joseffy. Jeux d’eau. G. Schirmer, 1907. 

Now we represent the upper melody in right hand from bars 31 and 32 (the given examples) of Jeux d’eau as follows: bar 31, 
beat 1: f a eb  in reference to C4; bar 1, beat 2: f a eb  ○ f a c e  = eaa f ; bar 31, beat 3: eaa f  ○ bae c  = f a eb ; bar 31, beat 4: f a eb  ○ 
f a c e  = eaa f ; bar 32, beat 1: eaa f  ○ baa c  = f a e f ; bar 32, beat 2: f a e f  ○ f aa c  = ea eb ; bar 32, beat 3: ea eb  ○ f aaa  = daeb ; bar 
32, beat 4: ca e c  in reference to C#4. 

 
Ravel, Jeux d’eau, bars 31 and 32. 

Rafael Joseffy. Jeux d’eau. G. Schirmer, 1907. 
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“Tone Rows and Tropes” 
 
Keywords : Tone rows, trope, database, group actions, normal form, stabilizer type, transversal of non-equivalent objects, 12-
tone series. 
 
Abstract : Applying different methods based on group actions we provide a complete classification of tone rows in the twelve 
tone scale. The main objects of the present paper are the orbits of tone rows under the action of the direct product of two 
dihedral groups. This means that tone rows are equivalent if and only if they can be constructed by transposing, inversion, 
retrograde, and/or time shift from a single row. We determine the orbit, the normal form, the stabilizer class of a tone row, 
its trope structure, diameter distance, and chord diagram. The database contains complete information on all 836,017 pairwise 
non-equivalent tone rows. Bigger orbits of tone rows are studied when we allow further operations on tone rows as the five-
step, the quart-circle or the exchange of parameters. 
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“Julián Carrillo’s Numerical Notation in his Guitar Music: Challenges as an Interpreter and Performer” 
 
Keywords : microtonality, Sonido 13, notation, performance, organology. 
 
Abstract : Julián Carrillo’s music, writings on music theory, compositions and organological innovations designed for diverse 
instruments have certainly been great contributions to the music of Mexico and the world. However, the study of his music 
and musical environment has been poorly approached so far, especially in the instrumental practice. The reformation 
proposed by Carrillo to simplify the writing system is based on eliminating the patterns, notes, accidents and keys of Western 
traditional music. Thus he proposes a horizontal line and two dashes, one above the line and another below, plus twelve 
numbers from zero to eleven to write music on the twelve-tone chromatic system. In the case of his microtonal music for 
guitar it must be said that, although the reading from topographical notations (such as tablatures of Renaissance and Baroque 
music) approaches the instrumentalist to Carillo’s system, this presents specific challenges posed in many ways for those who 
want to play his repertoire. 
The main goal of this proposal is to make a general review of the microtonal guitar repertoire written in the number system 
developed by Carrillo, as well as to present some solutions to technical and interpretive challenges of the Sonido 13 writing. 
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“Partitiogram, mnet, vnet and tnet : Embedded Abstractions Inside Compositional Games” 
 
Keywords : partitional analysis, Theory of integer partitions, Young’s lattice, musical composition, musical analysis. 
 
Abstract : This paper integrates a broad research about the pragmatic modelling of compositional process, and some 
mathematical abstractions that arises from the composer’s decisions. Partitional Analysis (PA – Gentil-Nunes & Carvalho, 
2003) is an original proposal of mediation between mathematical abstractions derived from the Theory of Integer Partitions 
(Euler, 1748; Andrews 1984; Andrews & Ericksson, 2004) and compositional theories and practices. Its main goal is the study 
of compositional games and has been used in the pedagogy of composition and in the creation of new pieces by professional 
composers as well as by students of composition. Some remarkable advances have been also achieved in musical analysis: the 
production of analysis of pieces from various historical periods, showing a significant convergence between the partitional 
structures and others analytical results (Gentil-Nunes, 2009, 2013; Santos, 2014; Monteiro, 2014). Analyses were also greatly 
facilitated by the implementation of the software Parsemat ®, programmed by the present author, which streamlines the 
calculation plotting of graphics generated from MIDI files. 
The point of departure of PA, inspired by the work of Wallace Berry (1976), is the consideration of binary relations between 
the agents of a musical plot. These agents can be any sound sources, qualities or elements used by the composer, for instance, 
voices, lines, timbres, positions, fingers, among others. The relations are categorized in collaboration and contraposition 
types, according to a given criterion (congruence between time points and duration, belonging to a line inside a melody, 
proximity of timbre or orchestral group, spatial location in the stage, and so on). This categorization in fact underlies the 
cognitive constitution of the partitions and, at the same time, leads to the establishment of the agglomeration (a) and 
dispersion (d ) indices, each one corresponding respectively to the amount of collaboration and contraposition relations 
founded in a specific configuration. Plotting of one index against the other results in a phase space called partitiogram, where 
the musical progressions evaluated from the chosen parameter form a trajectory. The partitiogram constitutes an exhaustive 
taxonomy of all possibilities of action available for the composer inside that specific field. It shows also the kinship of its 
elements, evidenced by the metrified distances between the locations of partitions. According to the selected criterion, a 
distinctive application is established, leading to the constitution of a mapping of semantic kinds of actions or configurations. 
For example, the rhythmic partitioning is an application that observes the congruence between time points and durations of 
concurrent voices. The result is a mapping of all textural possibilities available to the composer, with increasingly massive 
textures distributed along the horizontal axis and increasingly polyphonic textures along the vertical axis. As the classical 
textures types, like monophony, heterophony, polyphony and homophony can be found scattered in the plane, many others 
are also represented, including some more radical examples founded in textural music from avant-garde period. On the other 
side, considering the relations between pitches and internal lines of a melody, for example, will lead to another application of 
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PA, the linear partitioning. In this case, the partitiogram reflects the general behavior of a melodic structure, including some 
known situations, like arpeggiations, lines and compound melodies. 
The structure of partitiogram has an intimate affinity with Young’s Lattice, a mathematical abstraction introduced in the early 
twentieth century by Alfred Young. Young was a British clergyman and mathematician who formulated the Young’s 
Tableaux (representation of a partition, similar to Ferrers diagrams) and the Young’s Lattice. The latter is a partially ordered 
set formed by all integer partitions, ordered by inclusion relationships, and ranked according to their sums. It can also be 
represented as a Hasse diagram. The internal structure of the partitiogram is in fact a metrified version of a Young’s Lattice. 
Once the trajectories can give some information about the characteristic procedures of the composer, and once they share 
the same framework that underlies any possible compositional choice inside a specific field, it is also possible to create, as 
above mentioned, perfect and comprehensive homologies between musical elements that are not directly related, like texture, 
melody and timbre. Inside PA, the relations between adjacent partitions are qualified according to the nature of the specific 
progression. Three simple adjacency operators emerge from this procedure: resizing (m), revariance (v) and transference (t ). Resizing 
involves unitary change in the size of one part (tapering or fattening). Revariance points to the addition or subtraction of a 
unitary part (changing in diversity of global content inside partition). Transference occurs when both operations (m and v) come 
into play, but with opposite signs, in a complementary way, thus preserving the total sum. Resizing and revariance are 
categorizations of inclusion relations, taking some features in account for musical purposes. Simple operators form networks 
of adjacency relationships, each one with specific profile and structure. Plotting the relations in computational applications 
leads to three functions – mnet, vnet and tnet, which basically analyze the relations between partitions for a given numbers of 
factors and draw the requested networks inside the partitiogram. Mnet has a fractal structure that exhibits curves and 
bifurcations in each of its iterations. Vnet has a more vertical and predictable distribution. Tnet is delineated by straight 
diagonals, each one linked to the number of elements involved. 
The superposition of the three basic networks can represent the fundamental field of action of the composer and can also 
give rise to new applications, like typologies of compositional procedures, styles, and fingerprints. Using the partitiogram 
network as a pedagogic tool can lead to some kinds of creative games, including the application of canonic operations and 
transformations that can be the basis for compositional planning and can also be combined with other algorithmic 
techniques, like set theory, fractal development or progressive variations. The raised appliances can give to the student some 
conscience about their own work and its relation with all others possibilities, giving rise to new behaviors and consequently 
the expansion of its resources. Besides these basic functions, other operators, like compound transfer, concurrence and regglomeration, 
are being also investigated to become the basis for new analytical tools. All functions were developed inside Matlab 
environment and are integrated in the software Partitions ® for Windows, programmed by the present author. 
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Abstract : Many researchers that have tried to find the awakening of musical sounds agreed that Archytas solved the two mean 
geometrical problem or the musical interval three–parts division about 24,5 centuries ago [see: 1]; so he contributed to the 
Pythagorian notion of two–parts interval division [2]. However technology used to build musical instruments as well as music 
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forms used by composers in Western tradition, habituated ourselves to listen in the well known diatonic-chromatic system in 
which most of musical compositions and “master pieces” are composed and performed. This kind of music is based on the 
mathematical model 12√2 or 21/12 (Carrillo, 1956). Eventually, many musicians who lived in different times and geographies, 
tried to go on with Archytas developments; between them Ferrucio Busoni and Julian Carrillo. The former one obtained a 
musical interval division in fourth part, eighth part, sixteenth part, and so on, of tone when he did his practical experiment in 
1895 [see: 11]. 
This lecture is based in the use of computational systems as a musical instrument that performs music compositons written in 
third parts, fourth parts, fifth parts of tone. To do this, a programming language allows the user to interact with the 
computer’s loudspeakers, listening the so called microintervals. BASIC is used as programming language to write the software 
and to execute all melodic, armonic and rythmic transformations that are applicable to musical compositions (Carrillo, 1949). 
BASIC programming language has advantage over another ones because it is very economic in terms of hard disk space, use 
of mathematical language to write algorithms, and easiness to choose sound frequencies (for instance, 256 Hz or 261 Hz or 
any other value for central C). It also allows the use of the mathematical expressions 12√2, 18√2, 24√2, 48√2 [see: 9]. We show 
the program’s involved instructions and execute several parts of Carrillo’s compositions. 
The final purpose of this contribution is focused on using digital technology as an option to listen microtonal music examples 
without disregarding some disadvantages of this techonology. We also discuss how string bows and attack in wind 
instruments are neither physically easy to be modelled nor they are tempered (contrasting Carrillo, 1930); as well as how the 
propositions commonly used to describe some musical phenomena, are not necessarily—or not always—based in terms of 
physics’ scientific language (contrasting Carrillo, 1967). In spite of this, we stress the fact that our computer system and its 
programming language can be fruitfully used as a tool for research and education in microtonal music. 
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Abstract : In this proposal I expose strategies that have been followed in order to represent the movement of the human body 
using vectorial representations of the position of its joints through time, yielding information with which I can measure their 
instant velocity and acceleration in real time. 
Considering body from a self-referential perspective, we can represent gestures as the relationship between the trajectories 
drawn by the points that represent the joints through time. The focus of this work is set on mapping strategies that generate 
an environment that can represent body gestures as sounds, preserving the expressive properties of the first. 
Introduction 
The motivation behind the development of mapping strategies that can interpret a movement as a concurrent unfolding 
sound, lies on the creative restlessness of creating an environment that can promote both a synesthetic and an aesthetic 
experience. This particular focus on the objective of this work moves towards a wide understanding of music which can 
include the gestural experience of sound making as a pool of words that conform a vocabulary with which something can be 
transmitted. A code that is cyphered on gestures, a language common to all humans that needs no translation if it is to be 
considered universal, as the works of Ekman and Frisen suggest. 



 42

Considering gestural sound making has driven this research towards a physics representation of movement that takes 
advantage of the commercially available device Kinect to describe the parameters of movement at the actual moment in 
which a trajectory is being traced by the performer. These parameters are: position, instant velocity and instant acceleration. 
All the parameters are given in 3 dimensions and there is a position for 14 different body parts to which I will refer to as 
joints: a head, 2 shoulders, 2 elbows, 2 hands, a torso, 2 hips, 2 knees, 2 feet. So, given a position p[t ] = (x, y, z ) the velocity v 
of a joint can be calculates as 

v [t ] = p [t ] – p [t – 1].      (1) 
And the acceleration a can be calculates as 

a [t ] = v [t ] – v [t – 1].      (2) 
This vectorial representation contains sufficient information to generate a sound synthesis that responds to the specific 
properties of movement as this is being embodied. Furthermore, knowing the position of body parts we can measure 
distances between them and with respect to them, angles and directions. 
In order to respect the computer representation of 3 dimensional space the following coordinate system will be used, 

 
where the elevation angle φ is given by 

(3) 
 
and the azimuth angle θ by 

 
This idea is already exposed by ToddWinkler when he asked the following questions: 

Does human movement have constraints similar to musical instruments which might suggest something akin to idiomatic 
expression? Is there a distinct character to the movement of the hands? What is finger music? What is running music? What is the 
sound of one hand clapping? These questions may be answered by allowing the physicality of movement to impact on musical 
material and processes.[3] 

In this way, the space described by all the possible combinations of all the body parts is restricted to the humanly possible 
movements and those that the device can successfully encode. This approach is now widely accessible given to the device 
Kinect which together with the libraries of OpenNI can produce a human model by fitting a skeleton structure that contains 
the joints already mentioned in an arrangement coherent to the human body. Nevertheless the system has its deficiencies and 
the encodable space of movements is restricted even further, more specifically, the device works better for postures in which 
the performer does not bend to much the torso and flexes one or two knees, or rotates. Yet, this level of fidelity is now 
sufficient to generate an engaging experience that gives the impression of moving in a virtual space of sound. 
In short, we assume that the physical dynamics of movement encode to some extent the meaning that a gesture carries with 
it, both as a kinesthetic (subjective) and a kinetic (objective) experience [1]. Through this process the experience of the 
performer is being intervened by the resulting sound already, appealing to the simultaneous experience of proprioception of 
movement, and the space being activated and decoded by hearing. To put this into practice this document presents some 
examples of how a physics representation of movement and the moving body as a self referential system can be used to 
control synthesizers using gestural movements trying to preserve the encoded intentions represented by the model and 
emitted by the performer. 

Using Position, Velocity and Acceleration 
As these parameters describe the movement of each joint, their freedom of movement is restricted by their human kinetic 
configuration and defined linguistically by their synergic significance in the environment in which they usually move. This 
approach implies that the movement of the hands will bare different meanings than the movement of the feet, the knees or 
the torso. In this sense the expressive possibilities of the hands are greater than those offered by knees and torso for example. 
Also the amplitude of the movement will be greater and the changes of direction quicker. 
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In order to map the movement of the hands, there are various approaches that have been tried. One of them uses granular 
synthesis, which relies on the production of short sounds that can be defined locally through their timbre qualities, such as 
duration, tone, amplitude and context. 
For the hands a straight forward mapping is given by the interpretation of speed as a direct proportional relation to 
amplitude, another can be made by changing the tone whenever the angle between two consecutive velocities passes above a 
given threshold, this will give us information about sudden changes of direction. 
Feet move less, and their position is limited mostly to the lower halve of the scene so the mapping strategies must vary. An 
interesting information is the distance of a foot to the ground, this tells us if it is lifted or not, another source is the distance 
between feet, which combined with the previous information can describe how much effort the performer is putting into 
keeping balance. This last example takes us to our next approach: using the body as a reference to measure the position of 
joints with respect to itself. 

Conclusions 
As the different strategies for mapping have been implemented a double dependency was noticed while performing. The 
movement generates a sound that responds to it, simultaneously, the performer is being influenced by that sound to explore 
the virtual environment generated. This concurrent process is consistent with the idea of enactive cognition presented by 
Varela, Thomson and Roch, where a structural coupling takes place as a double process of exploration and behavioral 
adaptation to the environment [2]. In this sense we observed that the movements of the performer adapted to the restrictions 
of the system and to the movements that generated a satisfactory experience, restricting his/her intentions to what is possible 
in the virtual environment and what he/she pretends to express. 
Furthermore this efficient, yet simple representation of the body in motion allows for an enriching sonic experience that 
maintains a correspondence between sound and the kinesthetic experience that generated it, adding yet another dimension to 
the proprioception of movement as an objective sonic experience. 

References : [1] Sheets-Johnston, M. “Kinesthetic experience: understanding movement inside and out”, Body, Movement and 
Dance in Psychotherapy, 5 (2), pp. 111–127, Aug. 2012. [2] Varela, F.J., E. Thomson & E. Rosch. The Embodied Mind: Cognitive 
Science and Human Experience, The MIT Press, 1992. [3] Winkler, T. “Making Motion Sound Musical: Gesture Mapping 
Strategies for Interactive Computer Music” in Proceedings of the International Computer Music Conference (1995). [4] Wittenburg, J. 
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Special panel “Mathematics and Aesthetics in Julian Carrillo’s (1875-1965) work”: 
“Notes on the Aesthetic Dimensions of the Sonido 13 Theory” 
 
Keywords : scientificism, aesthetics, Sonido 13, avant-garde, microtonalism. 

Abstract : In 1954, Julián Carrillo declared, regarding his microtonal theory: “The supreme aspiration to fill space with infinite 
sonority was the concern that moved me during the 1895 experiment, and that has continued to encourage me to fill the gaps 
between sound and sound: That is the aesthetic ideal of the Sonido 13 Theory!”. In spite of the fact that the technical notes 
on such theory are many, the times in which Carrillo stops to consider his aesthetic dimensions are few. Moreover one may ask 
whether are there explicit or developed aesthetics of Sonido 13. If so, which are the traits that can be used to define such 
aesthetics? 
This paper intends to discuss the philosophical and aesthetic thought of Carrillo by systematizing his theory. A preliminary 
problem that arises when doing this kind of study is the need to discern between an author’s aesthetic thought and the field 
of aesthetic action offered by the author’s own theory: the two planes are not mutually exclusive, but they must be studied as 
separate entities. Musicologist Gisèle Brelet explains that often creators are not clearly conscious of the aesthetics they are 
calling forth to express and which would allow them to remain “true to themselves”, in constant renovation and exploration. 
In some cases happen that composers gifted with aesthetic originality do not know how to recognize this consciousness, and 
thus end up straying away from the promising aesthetics that other people saw as signs of their early work. 
This paper stems from the fact that musical creation, like all creative human acts, is not a metaphysically inspired impulse, but 
intellectual and scientific work. Little does matter whether theoretical statements precede creation or are discovered along the 
creative process. It is essential, however, that thought reigns over creation. And yet one may ask if Sonido 13 was born from 
a deep reflection on the expansion of sensitive experience. Or, on the contrary, if it is a product of a modern need for a 
scientificist correction of technique in the arts. This research will provide the necessary tools in order to reflect upon these 
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questions. The initial analysis will be of the formal (technical) imperatives and the expressive (aesthetic) imperatives which gave 
life to the creative will that urged Carrillo to develop his theory. Subsequently, lines of thought will be traced leading to the 
three premises upon which the edifice of Carrillo stands up. In other words, the soil upon “the aesthetics of Sonido 13” are 
built; namely: Purification, about the purity of music in its approach to physics and not to mathematics; Enrichment, about the 
quest for a sensorial infinitude; and Simplification, about a new musical notation that obliterates the alterations, the staff and 
the musical key. The study of each of these premises will bring out the positivist, scientificist and avant-garde traits that lie 
behind Carrillo’s proposal. 
The aim of this proposal is to suggest alternative ways of reflecting upon a possible aesthetics of Sonido 13 and to rescue, 
beyond a judgement of taste, the possibilities that this theory provides for new exploration in the field of aesthetic experience. 
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Jedrzejewski, Franck 
French Atomic Energy Commission (CEA Saclay) 
 
“Algebraic Combinatorics on Modes” 
 
Abstract : In the mid-1970s, Alain Louvier worked out microtonal scales called modes of progressive transposition and used them in 
many musical works. These modes have similar properties to the major modes and are related to diatonicism. Some of them 
were known by Ivan Wyschnegradsky and Georgy Rimsky-Korsakov, the grand-son of Nikolai. Deep scales are well known 
in diatonic theory, and are special cases of these modes. However, their algebraic structure is not known. Although the 
diatonic theories have been developed by many musicologists, such as Agmon, Balzano, Carey, Clampitt, Noll, Zweifel and 
others, many questions remain open. In this paper, we describe some studies on microtonality that had been published over 
the last century, and we review what is known and what remains to understand in this field, in both theoretical and 
compositional aspects. 
In the first part, we study the modes called by Alain Louvier “imperfect modes”. He used them in several important works as 
Le clavecin non tempéré (1973), Canto di Natale (1976) and Anneaux de lumière (1983). These modes are modes of progressive 
transposition. Their structural properties are highlighted in these music compositions. But Louvier used these modes only in 
the 24 tone equal temperament. The mathematical study would be to find a criterion to easily determine all modes of 
progressive transposition in any equal temperament, and in particular to determine all deep scales. The properties of these 
modes are very close to the properties of modes of limited transposition. In the second part, the enumeration of Messiaen 
modes in any equal temperament is considered. By studying microtonal modes, Louvier suggested to classify them. We 
present in the last section, another classification related to the plactic monoid. Along this talk, we question what, if they exist, 
the microtonal diatonicism and the microtonal modality could be. 

Progressive Transposition Scales 
In the N tone equal temperament (N-tet for short), a scale of progressive transposition L = {a1, …, ak} is a set of k pitches such 
that each transposition at v steps higher leads to a set M = {a1 + v mod N, …, ak + v mod N} such that L and M differs only 
by one pitch. The number v is called the transposition index. The scales are identified by their interval sequence, which is a word 
on an alphabet A. A n-scale is a word on an alphabet of cardinality n (with n = 2 or 3). In the 12 tone system, a simple 
computation shows that there are only three 2-scales of 7 notes: the major scale 2212221 with transposition index v = 5, the 
pseudo whole scale 1122222 with transposition index v = 2, and the chromatic scale 1111116 with v = 1: It is remarkable that the 
only tame scale of 7 notes is the major scale. In the 24 tone system, the number of scales of progressive transposition with 2 
or 3 letters ranges from 1 to 180. The scale of 7 notes 4334343 was used by Alain Louvier in Aria, récit et carillon (Le clavecin non 
tempéré no. 1). It is like a major scale (C, D, E↓, F, G, A↓, B↓) with modal degrees (E, A and B) lower by a quarter-tone. 
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Deep Scales 
A deep scale is a scale containing each interval class a unique number of times. It follows that the deep scale property ensures 
there is a different number of common tones associated with each transposition level with one exception. By definition, a 
deep scale is trivial if its transposition index is 1 or 2. The only non trivial 2-deep scales maximally even are the scales        
12n–1 12n for N = 4n and n ≥ 1 is an integer (1n means 1 repeated n times). In the 12-tet, it corresponds to the major scale, and 
in the 24-tet, it is what Wyschnegradsky called diatonicised chromatism. These scales are some archetypes of generalized diatonic 
scales. In addition, we will show that to determine if a scale M is deep or is a progressive transposition scale in the N-tet, it is 
sufficient to look at the subwords of the interval sequence. 

Microtonal Diatonic Scales 
Usually, a diatonic scale is a well-formed scale maximally even. But it has been shown that if A is maximally even, then N = 
2(k–1) and N ≡ 0mod4. It follows that the definition of diatonicity is not suited for all chromatic universes. That is why 
several theories emerged. Eytan Agmon found two kinds of diatonic scales depending on the parity of N. In his theory, the 
diatonic scales are 2(N–1)/21 if N is odd, and 2(N/2–3)12(N/2–4)1 if N is even. All these scales are maximally even and well-formed. 
In the 24-tet, the diatonicized chromatic scale is a scale of 13 notes, constructed by two connected heptachords. Wyschnegrasky 
used this scale in his 24 Preludes op. 22 and Premier fragment symphonique, op. 23. In this section, we give some others definitions 
of generalized diatonic scales. For example, if N = 13, the scale 22122121 is different from Agmon’s diatonic scale, but is the 
same as the one of Erv Wilson (as we can see on his keyboard plan). It is another way to consider diatonicism by introducing 
deep scales. For an integer p≥ 3, we describe the p-olic diatonic scales which are well-formed and deep scales over the alphabet 
{1, p}. 

Microtonal Modes of Limited Transposition 
This section deals with the enumeration of modes of limited transposition. Modes of limited transposition are well-known in 
the 12-tet since Olivier Messiaen has used them in many compositions. But it is a rather difficult question to give a way to 
construct these modes and to enumerate them in a given N-tet. In 1982, we first studied modes of limited transposition in 
quarter-tone system and found 381 modes. With F. Ballon, we give a complete answer and found the formulas to enumerate 
them. 
These modes are not just theoretical speculation. In the 24-tet, Georgy Rimsky-Korsakov used the scale 33333333. More 
recently, Alain Louvier wrote Prelude et Fugue no. 2 (1978) (Le clavecin non tempéré no. 2 ) in the 18 tone system. In this work, 
Louvier used a mode of limited transposition of interval sequence: 111311131113. In the same way, in the 24-tet, he used in 
Prelude et Fugue no. 3 (1973) (Le clavecin non tempéré no. 3 ) the mode of limited transposition 111117111117. 

Plactic Modes Classification 
As modes are relatively large, the goal of this section is to classify them. There are many ways do to so. Here we try to classify 
them by using plactic relations. Modes are identify by their interval structures, or more abstractly by letters a,b,c, etc. The plactic 
monoid over some totally order alphabet A= { a,b,c, …} with a<b< c<… is the monoid whose generators are the letters of 
the alphabet verifying the Knuth congruence relations 

bca ≡ bac whenever a < b≤ c  { abc ≡ cab whenever a≤ b < c  

In the 12-tet, the 14-modes class of some heptatonic modes is composed by some church modes and karnatic modes. In the 
24-tet, the class of 14 modes (with a = 1, b = 2) in the 12-tet remains the same class in the 24-tet (with a = 2, b = 4). The dual 
class (reverse each word and change the name of the letters) of 14 modes has two new implementations (a = 2, b = 7 and a = 
3, b = 4). The heptatonic mode 4334343 used by Alain Louvier in Le clavecin non tempéré belongs to this class. 

Conclusion 
Since the use of microtones is nowadays a standard in contemporary music, some composers like Alain Bancquart, Warren 
Burt, Pascale Criton, Dean Drummond, Georg-Friedrich Haas, Ben Johnston, Bernhard Lang, Michaël Levinas, Joe Maneri, 
Jean-Étienne Marie, Laurent Martin, Bruce Mather, Pauline Oliveros, Gérard Pape, François Paris, Enno Poppe, Alberto 
Posadas, Henri Pousseur, Horatiu Radulescu, Johnny Reinhard, Franz Richter Herf, Marc Sabat, Ezra Sims, Martin Smolka, 
Manfred Stahnke, Karlheinz Stockhausen, James Tenney, Lasse Thoressen, Toby Twining, Samuel Vriezen, Julia Werntz and 
many others, have shown different approaches in their use of microtones. Today, new microtonal investigations require 
further studies in microtonality. From the first paper of Georgy Rimsky-Korsakov to the one of Alain Louvier in 1997, and 
to some more recent papers, the investigation of microtonal modes is a great way for understanding diatonicity. 
References : [1] Agmon, E. 1989. “A Mathematical Model of the Diatonic System”. Journal of Music Theory 33 (1): 1–25. [2] 
Clough, J. 1979. “Aspects of Diatonic Sets”. Journal of Music Theory, 23: 45–61. [3] Gould, M. 2000. “Balzano and Zweifel: 
Another Look at Generalized Diatonic Scales”. Perspectives of New Music, 38 (2): 88–105. [4] Jedrzejewski, F. 2008. 
“Generalized Diatonic Scales”. Journal of Mathematics and Music, 2/1, 21–36. [5] Louvier, A. “Recherche et classification des 
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Johnson, Tom & Samuel Vrizen 
Composers (from Paris & Amsterdam) 
 
“Informal talk between Tom Johnson and Samuel Vriezen” 
 
Keywords : Music and mathematics, experimental/constructivist music, combinatorics, block diagrams, Looking at Numbers. 
 
Abstract : Tom Johnson has been engaged translating mathematical patterns into music for quite some time, having built a 
considerable musical oeuvre tackling the issues involved from many different perspectives. Not being able to attend this 
Congress personally, Johnson agreed in participating live in a video conference here with his longtime collaborator and 
colleague, pianist/composer/writer Samuel Vriezen, who will also be playing a program that includes pieces by both of them. 
They will address common interests, the relations between music, mathematics and composition, the pieces to be played and 
recent work. Also on the agenda is Looking at Numbers, a recent book on visualization and sonification of numeric patterns 
written by Johnson with Franck Jedrzejewski. The book contains a collection of visual approaches to mathematical problems 
(mainly in combinatorics), some of which arise from specifically musical questions. That is the case of block designs, which 
happen to be a meeting point in the relation between the two guest speakers. 

References: [1] Johnson, T., & F. Jedrzejewski. (2014). Looking at Numbers. Birkhäuser. [2] Johnson, T. & S. Vriezen (2013). The 
Chord Catalogue, Within Fourths/Within Fifths. S. Vriezen, piano. Edition Wandelweiser Records. [3] Johnson, T. (2012). Correct 
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Keywords : Microtonal, just intonation, equal divisions of the octave, EDOs, regular temperament, meantone, linear 
temperament, metatonal, xenharmonic. 
 
Abstract : Today, microtonality has both, a theory that greatly exceeds common practice, and a common practice of music that 
often enters microtonal territory, but is not described outside the concept of 12edo. Microtonality is also a strange term for 
music which can have basis in tunings that contain larger intervals than common practice, for example 5edo which has 240c 
steps, or 7edo which contains 171c steps. The multiples of these tunings (10, 15, 14, 21 etc. edos) also contain these same 
larger intervals. Metatonal music or xenharmonic music have been proposed as terms to describe this music. I believe that this 
music will eventually not be thought of as a subcategory of 12edo, but the other way around, as this music offers description 
that transcends cultural, historical, and technological bounds. 

Summary of JI 
Just intonation ( JI) is a tuning in which the relationship between frequencies of notes in a scale can be described by ratios of 
whole numbers. Equal division of the octave tunings (EDOs) are described by multiples of the roots of 2 equal to the 
division of the octave (ex. ratio between each consecutive interval of 12edo is equal to the 12th root of 2 : 1). The reason for 
the use of EDOs over JI can be illustrated in the fact that when stacking the frequency ratio 3:2 (P5), a ratio of 81:64 is 
created which is a “major third”, but a major third tuned to the ratio 5:4 is more likely to occur when someone tunes the M3 
to the tonic by ear, as opposed to tuning consecutive 5ths (3/2s) by ear. The 19edo for example tunes the M3 very close to 5:4 
(closer than 12edo) but at the expense of the P5 being flatter than 3:2 in both JI and 12edo (however, the M3 in 12edo is 
further to JI than the P5 in 19edo is to JI). 

Summary of 1–31 edos 
The equal divisions of the octave 31 and lower have been the centre of my interest in microtonal music for the past few years. 
Just intonation was the focus prior. 1edo is only a single note. 2edo is the “tritone” of 12edo, aka the frequency ratio of 
sqrt(2). Tritone becomes a misnomer here as it is no longer 3 “tones” of 12edo. 3edo is the augmented triad that exists in 
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12edo. Each interval of 3edo is equal to the frequency ratio of 3rt(2). Furthermore, each interval of n-edo is equal to the 
frequency ratio of (n)rt(2). 4edo is the diminished 7th that occurs in 12edo. 5edo in an equally spaced pentatonic scale in 
which each interval is 9c flat of 8/7 (and plays a large role in 15edo, which can be thought of as three interlocking 5edos). 
6edo is the whole tone scale that exists in 12edo. 7edo sounds not too distant to a 12edo major scale even though the M3, P4 
and P5 arguabley do not exist. 8edo is two interlocking diminished 7th triads (as found in 12edo) which are dissonant to each 
other. 9edo is three interlocking augmented triads (as found in 12edo), and approximates the septimal minor third (7/6) 
almost exactly. 
My research of equal divisions of the octave has been centred around their similarities, differences, and their unique 
properties, as opposed to a search for optimization. For example, 14edo has two interlocking 7edo note scales which both 
loosely approximate the major diatonic scale. 15edo has three interlocking 5edo scales which are similar to the minor 
pentatonic scale (but tuned more to the 7th harmonic instead of the inverse of the 5th). 16edo contains an “anti-major scale” 
with the pattern of ssLsssL or 2232223 and has a P5 tuned so flat that four of them stacked will approximate a minor third 
instead of a major third. 19edo works similarly to 12edo in many ways. 19edo contains a major triad that sounds arguably 
better than in 12 (with the M3 far closer to 5/4 than the sharp M3 in 12edo, but at the expense of a flatter P5, which is still 
closer to 3/2 than the M3 of 12edo is to 5/4). 19edo also contains a diatonic scale with step sizes of 3323332 which works 
equivalently to the 12edo major scale pattern of TTsTTTs. 

15 edo & Porcupine Temperament 
15 equal divisions of the octave contains “Porcupine Temperament”. Porcupine is a linear temperament which tempers out 
the comma 250/243, which is called the Porcupine Comma or the Maximal Diesis which is defined as the difference 
between: three 10/9s and 4/3, three 6/5s and 16/9, and 81/80 and 25/24. In this temperament, 2 perfect fourths are equal 
to 3 minor thirds. This can be seen in 15edo where the P4 is a 6 step interval and the m3 is a 4 step interval. This can also be 
thought of as breaking the P4 into 3 equal parts and the m3 being broken into 2 equal parts. 22edo also contains Porcupine 
Temperament where the P4 is a 9 step interval, and the m3 is a 6 step interval. 
15edo creates great 10 note major like scales with the tone pattern of 2121212121. This can also be thought of as two 5edo 
scales 80c apart. With 5edo as a tonal basis, all of the other notes in 15edo will work well as leading tones. This creates an 
interesting psychological effect while playing in 15edo where you feel both like you have more and less notes than 12edo. The 
usefulness of small # edos in practice is illuminated by the paradigm shift in 15 where a “major scale” can be thought of as 2 
interlocking pentatonic (equally spaced) scales and can contain 10 notes. 
A guitar fretted to 15edo with strings tuned to a JI major or minor triad (like open G or D tuning on a 12edo guitar) creates a 
system that hybrids the symmetries and 7-limit nature of 15edo while also containing a movable 5-limit JI triad. Tuning 
flexibility on instruments such as the guitar unlock a huge amount of sonics resources of this nature. Another example is in 
16edo, where if the 675c P5s are tuned sharp to the 700c of 12edo on some strings, the instrument becomes a subset of 
48edo (one of Carrillo’s tunings) and captures some of its best qualities (including accurate 5-limit harmony) without the 
practical struggle of such a large # edo tuning. 

19 edo 
19 equal divisions of the octave is a great tuning for 5-limit triadic harmony, meantone, and for approximating the same 7 
note diatonic scale that 12edo does. It approximates this scale with the same step pattern too, TTsTTTS or LLsLLLs, except 
instead of 2212221, it is 3323332. Another way to look at 19edo from the perspective of 12edo is to take the black key 
enharmonics from 12edo and separate the sharps from the flats; C# and D♭ are now different notes. In addition, B# will no 
longer be C, nor C♭ B, but B# will = C♭ and be an independent note, likewise with E#/ F♭. These 7 additional senses allow 
19edo to function very similarly to 12edo, and even to use an identical notation system to 12edo. 
Like 12edo, 19edo has a strong basis in Meantone Temperament. Meantone temperament is the predecessor to the concept 
of 12 equal temperament. In meantone, four 3/2s = 5/1. This is equivalent to saying that the M3 is tuned by stacking four 
P5s. This was the method of tuning in Bach’s time and created various meantone tunings, well-temperaments, and eventually 
paved way for 12edo. Meantone equates 9/8 and 10/9 (tempers out 81/80, the syntonic comma) and hence creates a M3 
comprised of two equal tones. Other EDOs that contain meantone are 19, 31, 43, 50, 55, and 81. The 10/9 “minor tone” is 
also the difference between the JI P5 and M6 and the tempering of it therefore plays a large role in the natural minor scale in 
12edo being a “mode” of the major scale. 

Carrillo’s EDOs from a xenharmonic perspective 
24edo contains all of the harmony of 12edo as it is a multiply of it, yet, due to where these 12 additional notes are located, it 
does not expand on the 5 or 7 limit harmony that exists in 12. It does, however, introduce the 11th limit. This may be 
deterring factor for those whose first escapade into microtonal music from 12edo is 24edo. 24edo is often used to represent 
tuning in Arabic music. This is, however, a very limited relation, as Arabic music is primarily melodic in nature and is very 
aural in tradition, with few instruments being tuned to the precision of a piano or a guitar. The very nature of the instruments 
of Middle Eastern music show a desire for pitch flexibility. 
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36edo not only divides each semi-tone in 12 edo into 3 parts, but due to the highly composite nature of the number, also 
divides each whole tone in 12 into 3 parts. 36edo, like 24edo, also offers no improvement on the 5-limit harmony of 12edo. 
However, it does improve the approximations to 7 limit harmony. 36edo also offers a lot of resources for atonal music, and 
can be thought of 6 interlocking whole tone scales (the 12edo whole tone scale is exactly 6edo). 
48edo can be conceived both as dividing each 12edo interval into 4 parts, and as dividing each interval of 16edo into 3 parts. 
“Something close to 48edo is what you get if you cross 16edo with pure fifths, for instance, on a 16-tone guitar. The presence 
of 12/11 in 16edo allows a string offset of 11/8 to also work for producing perfect fifths” (quoted from Xenharmonic wiki). 
72edo is used as a theoretical construct for tuning Turkish music and is good EDO for miracle temperament. Miracle 
temperament divides 3/2 into 6 equal parts. The generating interval in miracle is called a “secor” and is between 16/15 and 
15/14 (116.7c). 225/224, called the Septimal Kleisma, the difference between 16/15 and 15/14 is hence is tempered out. 
Two secors make an 8/7 interval, the septimal whole tone. Two 8/7s or 6 decors make up a 3/2, therefore 1029/1024 is also 
tempered out (the difference between two 8/7s and 3/2). The neutral third of 11:9 is also approximated by 3 secors. 72edo 
works well for miracle temperament because the secor is approximately 7 steps of 72edo. 72edo is a very accurate tuning for 
3, 5, 7 and 11 limit harmony, yet is incredibly large. The secor is also approximated in 31edo, 41edo, 72edo, and Harry 
Partch’s 43 tone JI scale. 
96edo is the largest # EDO used by Carrillo. Like all EDOs in this range, 96edo offers quite accurate approximations of 
many common JI intervals. The varying degrees of accuracy and usefulness in this region (even above 36edo) are outside my 
field of study at the moment. 

Conclusion 
Small equal divisions of the octave offer a plethora of interesting and useful properties for composers and musicians and 
theorists alike, from tunings such as 19edo or 31edo which can be thought of as expansions of 12edo and meantone, but with 
a completely different tone set, to tunings such as 14/15/16edo which offer strange and beautiful new patterns and 
symmetries, to the tunings of Julian Carrillo which explicitly expand 12edo. 

References : [1] Partch, H. Genesis of a Music: An Account of a Creative Work, Its Roots, and Its Fulfillments, Da Capo, 1974. [2] 
Helmholtz, H. On the Sensations of Tone, Dover, New York, 2013. [3] http://xenharmonic.wikispaces.com/ 

Notes : Here metatonal music refers to a guitar maker from Florida who specialized in making and modify guitars to equal 
divisions of the octave between 12-46edo. Xenharmonic music refers to the internet community “the Xenharmonic Alliance II”. 

Lach, Juan Sebastián 
Conservatorio de las Rosas (Morelia) 
 
Special panel “Mathematics and Aesthetics in Julian Carrillo’s (1875-1965) work”: 
“Compositional research into the logics of pitch-distance and the timbral facet of harmony in Julián 
Carrillo’s Leyes de Metamorfosis Musicales (Laws of Musical Metamorphoses)” 
 
Keywords : Harmonic theory, harmonic duality, early microtonal pioneers. 
 
Abstract : Pitch materials in music can be understood as having two components, pitch-distance and proportionality. Both 
aspects are intertwined and difficult to separate, but can be distinguished by studying their properties. The distance aspect is 
related to spectrum and inhabits the continuous logarithmic space of pitch glissandi; its main qualitative effect is sensory 
consonance and dissonance. The proportional aspect is related to intervallic properties linked through numbers and can be 
represented in a multidimensional lattice of discrete points that lies within the pitch continuum; its main quality is 
harmonicity, which does not always coincide with sensory consonance. Following James Tenney [2], who theorizes musical 
form as consisting of morphology (contour, continuous variations of musical variables) and structure (relations between parts 
and wholes) at different temporal levels, we could also say that the proportional aspect of harmony relates to structure and 
the timbral one to morphology. 
Carrillo’s research in Leyes de Metamorfosis Musicales (1949 [1927]) can be read from the viewpoint of this formal and harmonic 
duality. Even if he did not know or intend something resembling this theoretical perspective, it can nevertheless reveal how 
his involvement with the properties of the pitch materials unleashed by his divisions of the octave was not arbitrary. His 
proposal of scaling musical morphologies in pitch and time can be seen as a consequence of his search for an intrinsic logic 
to the types of intervals and tuning systems he was using. Given that his approach took place along the pitch-distance axis of 
the harmonic dichotomy, his findings reveal some important attributes of this facet, anticipating, for example, some features 
of Iannis Xenakis’ work [5]. His method can also be compared to the research of his younger contemporary, Augusto 
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Novaro, who instead of a timbral perspective, approaches intervals proportionally before searching for the equal divisions of 
the octave which best approximate them. This comparison can shed some light on the current landscape of microtonal 
composition. 
Despite the naiveté of some of Carrillo’s writing and his sometimes dogmatic statements, and beyond his complex, difficult 
personality and obscuring biographical anecdotes, we want to show that his ideas still carry an undeveloped potential that can 
be expanded and adapted (for example, by taking their perceptual and aesthetic effects into account) to today’s compositional 
situation. 
References: [1] Carrillo, J. (1949 [1927]). Leyes de Metamorfosis Musicales. Mexico: Carrillo. [2] Tenney, J. (1971). “Form in 20th 
century Music”. Dictionary of Contemporary Music, EP Dutton: New York. [3] Barlow, C. (2012). On Musiquantics. Mainz: 
Johannes-Gutenberg-Universität. [4] Novaro, A. (1951 [1933]). Sistema natural de la música. Manuel Casas. [5] Xenakis, I. 
(1992). Formalized music: thought and mathematics in composition. Pendragon Press. 

Lach, Juan Sebastián 
Conservatorio de las Rosas (Morelia) 
 
“Proportion, Perception, Speculation: Relationship between Numbers and Music in the Construction of 
a Contemporary Pythagoreanism” 
 
Keywords : Pythagoreanism, musical qualities of numbers, music and mathematics, continuous-discrete dichotomy, sonification. 
 
Abstract : Music, as a practice, a form of knowledge and and art form, relates in many ways to mathematics. In particular, 
there is a link between whole numbers and intervallic pitch perception that stems from Pythagorean discoveries and has 
developed through time into a collection of compositional harmonic resources that widens the space of possibilities 
afforded by the tonality/atonality dilemma. Our research attempts to delve into qualitative musical-numeric 
connections in order to assess some mathematics that could be associated with musical structures at different temporal 
scales. The approach is speculative in nature, in the sense that it is not only related to empirical or music-theoretical 
research but has an experimental dimension, extrapolating ideas in order to suggest points of departure in composition. 
The mathematical opposition between the continuous and the discrete encompasses many unresolved aporias 
throughout Western thought. It also surfaces in music at several levels. We will propose a map that traces musical 
structures at various time scales by describing types of musical phenomena at each level and in relation to abstract 
mathematical objects at both sides of the discrete/continuous polarity. These mathematical structures can be used 
analytically, but their main purpose is to synthesize musical forms, working as possible logics that are immanent to their 
materials (i.e., being also part of the playing field). Abstraction is understood in the sense of physical (or acoustic) 
‘concentration’ rather than as a higherorder representation; it is induced through a statistics of perceptual thresholds 
(perception broadly understood as a filtering process and multi sensory space-time synthesis) and allows us to think and 
put forward strategies to navigate each temporal realm. 
Perceptual temporal integration determines the micro scale, where harmonic arithmetic and timbral spectrality play a 
role; as differentiation gives way to plurality and multiplicity of sound phenomena in the meso scale, it is combinatorics 
that can serve as a guiding thread; at the macro scale of form, where memory as intensive presence has an important 
effect, maybe a more diagrammatic, non-linear approach can be feasible, one that can encompass different aesthetic 
models of experience. We could even conceive a bigger scope, having to do with awareness beyond a conventional 
musical performance, as in the case of very long pieces or installations and related to the ‘atmospheric’ aspect of sound 
experience. 
Each temporality has its own consistency and logic and the limits between scales are not fixed and can also be 
considered intermediary spaces of their own. To illustrate these approaches, some relations between mathematics and 
music in contemporary music will be discussed with a view to suggesting numbers and structures that are interesting for 
sonification. 

References: [1] Badiou, A. (2009). Logics of worlds: being and event, 2. London: Continuum. [2] Badiou, A. (2014). Mathematics 
of the Transcendental. London: Bloomsbury. [3] Tenney, J. (1992). Meta-Hodos: A Phenomenology of 20th-century Musical 
Mateirals and an Approach to Study of Form and Meta Meta-Hodos. Frog Peak Music. [4] Kittler, F. (2006). “Number and 



 50

numeral.” Theory, Culture & Society, 23(7-8), 51–61. [5] Meillassoux, Q. (2012). “Iteration, reiteration, repetition: A 
speculative analysis of the meaningless sign”. [6] Garcia, T. (2014). Form and Object: A Treatise on Things. Edinburgh 
University Press, Edinburgh. [7] Gamer, C. (1967). “Some combinational resources of equaltempered systems”. Journal 
of Music Theory, 11(1): 32–59. 

Lluis-Puebla, Emilio 
Faculty of Sciences, UNAM, Mexico City 
& ICMM 2014 National President 
 
Welcome lecture (2): 

“On the Relationship Between Music and Mathematics” 
 
Keywords: Mathematical Music Theory, mathematical structures. 
 
Abstract : In these words of mathematical and musical welcome, a short view of the last three decades of this field 
mathematically speaking in Mexico will be addressed. We will give a brief description of how it began and what has being 
done. Also we will comment briefly on the relation between mathematics and music. 
 
References : [1] Agustín-Aquino, O.A. & E. Lluis-Puebla (Eds.) Memoirs of the Fouth International Seminar on Mathematical Music 
Theory. Publicaciones Electrónicas de la Sociedad Matemática Mexicana. Serie Memorias. Vol. 4. 2012. [2] Lluis-Puebla, E., G. 
Mazzola & T. Noll (Eds.) Perspectives in Mathematical and Computational Music Theory. epOs. Osnabrück. 2004. [3] Lluis-Puebla, 
E. Música, Matemática y Concertismo. Publicaciones Electrónicas del Instituto Mexicano de Ciencias y Humanidades. 2011. 
Mazzola, G. The Topos of Music, Birkhäuser. 2002. 

Lobato-Cardoso, Jaime & Juan Antonio Martínez-Rojas 
ENM – UNAM (Mexico City) & Departamento de Teoría de la Señal y Comunicaciones, Universidad de Alcalá (Madrid) 
 
“Topos Echóchromas Hórou : the Place of Timbre of Space” 
 
Abstract : Recent researches on embodied cognition have developed major advances in the study of human echolocation, not 
only by developing theoretical models, but protocols for teaching it as well. This sensory quality that humans possess allows 
us to obtain data on dimensionality of space, and expanding our capacities to interact with the surrounding environment. 
From a Spatial Composition Method proposed by co-author Lobato-Cardoso, were related: binaurality, echolocation and 
evanescent perception (new technique discovered and developed by co-author Martínez-Rojas). This paper proposes making 
a comparative analysis of different types of geometry and acoustic phenomena which allow us to perceive a three-dimensional 
space through the ear. 
The main goal elaborating this first comparison is to set a precedent for the development of alternative methods of teaching 
geometry and topology, as well as build a conceptual bridge between Spatial Composition Method and traditional systems, 
through the geometrical description of timbre. 

Lobato-Cardoso, Jaime & Pablo Padilla-Longoria 
ENM – UNAM (Mexico City) & IIMAS – UNAM (Mexico City) 
 
“Models and Algorithms for Music Generated by Physiological Processes” 
 
Abstract : Physiological processes give rise to a wide variety of signals. These signals in turn can be detected by changes in 
pressure, temperature, electrical potential and so on. When measured and converted with the appropriate transducer, they 
constitute the raw material which algorithms and models may translate into sound. In this lecture we explore some specific 
models and algorithms in different physiological contexts. 
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Loy, Gareth 
Gareth, Incorporated (California) 
 
“Music, Expectation, and Information Theory” 
 
Keywords : emotion in music, entropy, expectancy, surprisal, uncertainty. 
 
Abstract : Music is successful in a Darwinian sense if listeners attend to it, which they do if they find it entertaining. Listeners 
are entertained by the interplay between their expectations and the musical facts that they experience. Expectation is 
anticipatory belief, which ranges from certainty to uncertainty. The interplay of certainty and uncertainty in the listener’s 
expectations relates to the affects of satisfaction and surprise. Music requires a degree of structural ambiguity—enough, but 
not too much—to balance listener’s expectations, and thereby gain and maintain interest. The concept of surprisal from 
information theory suggests a computational perspective on the psychology of musical expectation that may help form the 
basis of a theory of musical attention.  
Though the examples in this presentation draw from Western classical music, the hope is that researchers will be encouraged 
to investigate how the ideas presented can be applied to music of other cultures and eras, leading to a mathematically 
grounded universal theory of music. 
 
References : [1] Aristoxenus (c. 300 BC). The Harmonic elements. In Source readings in music history: Antiquity and the middle ages (ed. O. 
Strunk, 1950), pp. 27–31. W.W. Norton & Co., New York (p. 31). [2] Cage, J. (1958). Fontana Mix. [3] Freyd, J. J. (1987). 
“Dynamic mental representations”. Psychological Review, 94 (4): 427–438. [4] Haydn, J. (1791). Symphony no. 94 (“Surprise”, 2nd 
movement). [5] Langer, S. (1942). Philosophy in a New Key: A Study in the Symbolism of Reason, Rite and Art. Harvard University 
Press. [6] Meyer, L. (1956). Emotion and Meaning in Music. University of Chicago Press. [7] Nyquist, H. (1928). “Certain topics 
in telegraph transmission theory.” Trans. AIEE, vol. 47, pp. 617–644, Apr. 1928. [8] Schoenberg, A. (1923). Suite for Piano Op 
25 – Part II. [9] Shannon, C. & W. Weaver (1949). A Mathematical Model of Communication. University of Illinois Press, Urbana, 
IL. [10] Shannon, C. (1948). “A mathematical theory of communication”. Bell System Technical Journal 27 (July and October): 
pp. 379–423, 623–656. 

Mathias-Motta, Carlos 
Universidade Federal Fluminense, Niterói (Brazil) 
 
“Project DRUMMATH: Rhythms that Build Meaning in Mathematical Concepts for the Visually 
Impaired” 
 
Keywords : Drummath, special needs of visually impaired students, Mathematics Education, rhythms. 
 
Abstract : The Project DRUMMATH is a research on how visually impaired children learn mathematics and on how sounds 
can be used as sources for building images. It focuses on the development of pedagogical activities designed to help students 
build meaning around mathematical concepts at early age. The activities developed on Project DRUMMATH demand 
students to count and perform movements, clapping their hands and feet, on top of musical backgrounds (like sounds and 
rhythms). The lecture will focus on two different moments of the history of Project DRUMMATH’s development. The first 
one when tools from number theory (such as modular congruences equations of higher degrees) were used to describe 
rhythms, melodies and harmonies. The second moment regards how the mathematical description of rhythms turned out to 
be the very basis of the development of pedagogical activities toward the visually impaired. Several activities that were 
developed on a special Brazilian school for the visually impaired children will be shown and also executed by the participants. 
The lecture will gather pure aspects of number theory, learning theories that concern special needs. 
 

References : [1] Bergson, H. Matéria e Memória: ensaio sobre a relação do corpo com o espírito. São Paulo: Martins Fontes, 1999. [2] 
Ernest, P. The Psychology of Learning Mathematics: the cognitive, affective and contextual domains of mathematics education. Lampert 
Academic Publishing, 2011. [3] Ernest, P. Mathematics and Special Educational Needs: Theories of mathematical abilities and effective 
types of intervention with low and high attainers in mathematics. Lampert Academic Publishing, 2011. [4] Fonseca, V. Cognição e 
Aprendizagem. Lisboa: Âncora Editora, 2001. [5] Hersh, R. What is Mathematics, really? New York: Oxford University Press, 
1997. [6] Le Boulch, J. Educação Psicomotora: a psicocinética na idade escolar. Porto Alegre: Artmed, 1995. 
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Mazzola, Guerino 
School of Music, University of Minnesota 
& ICMM 2014 Honorific President 
 
PLENARY LECTURE: 

“Gestural Dynamics in Modulation—A Musical String Theory” 
 
Keywords : hypergesture, Modulation Theory, Stokes theorem, Escher theorem, String Theory. 
 
Abstract : In a recent book [1, Ch. 9:10], we have presented a restatement of basic theorems of mathematical counterpoint 
theory in terms of the mathematical theory of musical gestures [2,3]. The present paper aims at a hypergestural discussion of 
classical mathematical modulation theory [4,5,6]. Following that approach, it can be proved that tonal modulation as 
described by Arnold Schoenberg can be modeled using symmetries between scales underlying the involved tonalities. For 
example, to modulate from C-major to F-major, Schoenberg proposes the three modulation degrees IIF, IVF, VIIF. These 
degrees also come out from the mathematical model, where the C scale is mapped to the F scale using the inversion 
symmetry S=T 9.-1 between e and f. The mathematical model yields exactly Schoenberg’s modulation degrees in all cases 
where he describes a direct modulation, namely for fourth and fifth circle distances 1,2,3,4. 
The present approach is based on the idea that degrees in the start tonality are interpreted as being gestures that move to 
degrees (qua gestures) of the target tonality be means of hypergestures. This means that the symmetries relating tonalities in 
the classical setup are replaced by hypergestures that connect gesturally interpreted degrees. Although we are still in search 
for a theory that might generate natural “minimal action” hypergestures in the sense of Hamilton’s variational principle in 
mechanics [7], the present hypergestural model solves the problem. The classical modulation model was driven by the idea of 
elementary fermion particles in physics, interacting via bosons that materialize interaction forces. The hypergestural 
restatement of this model views symmetry-corresponding degrees as being musical fermions being connected via a boson 
hypergesture. We also interpret this hypergestural approach as a complete parallel to S-duality in physical string theory [8]. 

The general procedure is as follows: We first model gestures and hypergestures in the real plane ℝ2, where the usual pitch 
class set is embedded on a circle. We then look at triadic degrees of pitch class points, which are represented as gestures of 
lines connecting these points. Next, we construct vector fields on ℝ2 whose integral curves give rise to hypergesture curves 
that deform the gestural degrees. This field is the Lie product [X,Y] of two fields, X and Y, that represent the inner 
symmetries of the start and target tonalities of our moduation. Figure 1, left, shows this Lie product, together with the pitch 
class circle. To the right of Figure 1 we show the three integral curves of [X,Y] that comprise all twelve pitch classes. The 
deeper reason why only three integral curves suffice to contain all twelve pitch class points is still not understood, but it is a 
fact. The field [X,Y], together its integral curves share a reflection symmetry which on the pitch classes coincides with the 
symmetry Ue/f  that maps the start tonality C to the target tonality F. 
 

 
Figure 1. Left: The vector field [X,Y], together with the circle containing the twelve pitch classes. Right: The three integral 

curves of [X,Y] that comprise the twelve pitch classes, together with the field symmetry Ue/f. 
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Then we discuss cadences of such triadic degrees and their behavior under hypergestural deformation. We prove that for a 
specific choice of such vector fields, the inversion symmetries used in the classical model map pitch classes x into pitch 
classes living in the integral curve of x. Next we consider the trajectories of the curves of the Escher-Theorem-inverted 
perspective and calculate energy integrals of such curves. Under the condition of non-vanishing energy, we can then exhibit 
the admitted degrees. These integrals refer to Stokes’ theorem for hypergestures. We conclude this paper with a statement of 
this theorem and a sketch of a proof. 
 
References : [1] Agustín-Aquino, O.A., J. Junod, G. Mazzola: Computational Counterpoint Worlds. Springer, Heidelberg 2014. [2] 
Mazzola, G. & M. Andreatta: “Diagrams, Gestures and Formulae in Music”. Journal for Mathematics and Music, 1 (1): 23-46, 
2007. [3] Mazzola, G. “Categorical Gestures, the Diamond Conjecture, Lewin’s Question, and the Hammerklavier Sonata”. 
Journal of Mathematics and Music, 3 (1): 31–58, 2009. [4] Mazzola, G.: Gruppen und Kategorien in der Musik. Heldermann, Berlin 
1985. [5] Mazzola, G.: Geometrie der Töne. Birkhäuser, Basel 1990. [6] Mazzola, G., et al.: The Topos of Music. Birkhäuser, Basel 
2002. [7] Abraham, R.: Foundations of Mechanics. Benjamin, New York, 1967. [8] Hashimoto, K.: D-Brane. Springer, Heidelberg 
2012. 

Mendizabal-Ruiz, E. Gerardo 
Departamento de Ciencias Computacionales, CUCEI, Universidad de Guadalajara (Guadalajara) 
 
“A Computational Tool for Image Sound Synthesizing” 
 
Abstract : A sound synthesizer is an electronic device capable of producing a wide range of sounds by the generation of wave 
signals designed to imitate other instruments or generate new timbres employing different synthesis techniques [1]. 
Synthesizers may consist of one or more modules such as oscillators which generate with different waveforms (i.e., sine, saw, 
square), audio filters, envelope controllers, delay controllers, sampling recorders, etc. The creation of a new sound with a 
synthesizer may be performed by the subjective adjustment of these parameters until a pleasant sound is achieved. Obviously, 
in order to create a new sound with specific properties or imitate a specific sound, it is necessary to have some knowledge of 
the principles of sound and the impact of each of these parameters in the final sound of the synthesized instrument. 
A spectrogram is a tool that allows the visualization of the frequencies that generate a sound, and it is very useful for different 
applications in engineering and science including speech processing and identification and characterization of sounds [2]. A 
spectrogram is a image or array of numeric values that represent the intensity for an specific set of frequencies over time. It 
may be generated from an analogous sound signal by the use of pass-band filter banks tuned at different frequencies. For 
digital sound signals, the spectrogram can be computed using the Short Time Fourier Transforms (STFT). 
Given a sound signal S digitized with a sampling frequency Fs, the generation of an spectrogram by means of the STFFT 
consist of defining sections or chunks of a determined number of samples c and with a fixed percentage of overlapping O 
between the chunks. Each of the chunks is filtered employing a filter window (e.g., Hamming, Hanning, and Blackman). The 
Fourier transform of each filtered chunk is computed using the Fast Fourier Transform algorithm to produce a vector of 
complex values on which each of its element is associated with an specific frequency. The magnitude of the complex values at 
every element of the vector corresponds to the intensity of the corresponding frequency that generates the wave of the digital 
sound in the period of time determined by the signal chunk. The magnitude values are mapped to a discrete value in the 
interval [0255] and treated as a gray scale image or as a colored image using a color map. 
A sound wave may be reconstructed from its spectrogram. This brings the possibility of generating new sounds from defined 
patterns in an image. Moreover, the edition of a specific sound may be possible by the modification of the principal 
frequency components that defines it. However, currently this procedure must be performed manually on an image edition 
tool due to the lack of computational tools specifically designed for this purpose. 
In this work we present computational methods for the reconstruction of sounds from spectrograms images as a linear 
combination of oscillating functions with specific frequencies for which the weights are determined by the intensities of the 
spectrogram images. We introduce different tools to help the user in the creation of a new sound which considers the 
different properties of the pleasant sounds such as the use of harmonics at different multiples of the fundamental frequency. 
Additionally, we propose a method for the identification and segmentation of the principal frequency components of an 
spectrogram image by the use of image segmentation methods commonly employed in computer vision which allows the 
creation of a new sound based on existing sounds. 
 

References : [1] Vail, M. Vintage Synthesizers: Groundbreaking Instruments and Pioneering Designers of Electronic Music Synthesizers. 
Backbeat Books, 2000. [2] Flanagan, J.L. Speech Analysis, Synthesis and Perception. Springer-Verlag, 1972. 
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Montiel, Mariana 
Georgia State University (Atlanta) 
 
“Manuel M. Ponce’s piano Sonata No. 2 (1916): An Analysis Using Signature Transformations” 
 
Keywords : Signature transformations, Neo-Riemannian transformations, Manuel M. Ponce, diatonicism, modality. 
 
Abstract : In the present work an analysis is made of several passages from Manuel M. Ponce’s (1882–1948) Sonata No. 2 for 
piano, employing Julian Hook’s theoretical development of signature transformations. Ponce’s Sonata no. 2 has clearly a nationalist 
character. The two themes of the first movement are borrowed from two folksongs, El sombrero ancho and Las mañanitas, and 
the first theme of the second movement is based on the traditional Mexican “son”, Pica, pica, perico. The date of this 
composition, 1916, falls in what is still considered Ponce’s “romantic period”, opposed to his “modern style” of later years 
[see: 3]. Nevertheless, when studying this piece, one finds a style that is far from the formal characterization of the period we 
know as Romanticism; the first movement of the Sonata is full of non-traditional chord progressions, of dissonance, hints of 
modality, and the influence of the impressionism of Debussy—so admired by Ponce. 
Inside the neo-Riemannian focus there have arisen several forms of carrying out theoretical analysis of a score by means of 
mathematical transformation groups. There is an undeniable coincidence among these forms but, at the same time, each one 
offers unique aspects that privilege the specificities of the piece itself and the needs of the analyst. In this work we will make 
use of signature transformations, fruit of the theoretical development of Julian Hook [see: 4]. Signature transformations act on 
the set of fixed diatonic forms [4 : 140–142]. Fixed diatonic forms are equivalence classes of fragments of diatonic music, with a 
key signature and a clef. These fragments are in the same equivalence class if their pitch-class content is the same (modulo 
12), and if they determine the same diatonic collection up to enharmonic equivalence. 

We will use the notation sn , n ∈ N, for the number n of sharps that are added and s–n  for the number –n of flats that are 
added. The operation of adding sharps (or subtracting flats) is “positive”, and the operation of subtracting sharps (or adding 
flats) is “negative”. For example, in figure 1, s–6  reduces the key signature by 4 sharps and then we continue to count 
negatively by adding flats:  
 

 

Fig. 1 Signature Transformation. 

The signature transformations form a cyclic group of 84 elements (they pass through the twelve pitches of the chromatic 
scale and the seven diatonic modes) generated by s1, although it is not expected that 84 sharps would be added to a key 
signature! Indeed, even though the signature transformations form a cyclic group, the group of signature transformations can 
be looked at as compositions with Schritts, given that the sn and s–n  can be reached through compositions with Tn and tn , the 
chromatic and diatonic transposition operators respectively. 
If we add seven sharps to a key signature we will transpose the diatonic collection a semitone (for example, from C major to 
C# major). Therefore, s7 operates in the same way as T1 and, analogously, s–7  acts as T11. Hence the validity of compositions 
such as T7s2 = (T1)7s2 = (s7)7s2 = s51 and the perspective of composition with Schritts. 
As an example of how signature transformations work, we will trace the changes from measures 227 and 228 to measures 231 
and 232 of the first movement of Ponce’s Sonata no. 2. Measures 227 and 228 are in E Aeolian, which only has one sharp. 
This is reflected in Figure 3, but in the original piece the key signature has four sharps, as can be seen in Figure 2. Measures 
231 and 232 are in G# Aeolian, which has five sharps. To travel from E Aeolian to G# Aeolian we must add four sharps by 
the application s4 (which places us in E Lydian) and then transpose diatonically by two tones. We emphasize that, as the 
composition is commutative, it could have also been carried out in the inverted order (although there are examples in which it 
is not possible musically to carry out some sn in particular, due to the diatonic context). Hence, the signature transformation is 
t2s4 = (t1)2s4 = (s12) 2s4 = s28 = s4t2. Of course, we can look at this transformation as simply T4 = (T1)4 = (s7)4 = s28. 
Signature transformations, once they are understood and practiced, are a friendly and powerful tool for surfing among the 84 
possibilities of the seven diatonic modes and twelve possible tonics. This mathematical formulation is ideal for analysis and 
reflects the mastery of its creator in the use of the algebra that underlies it; it also makes patent the necessity of this type of 
analysis, in which the shifts in these rigorously defined, but at the same time flexible, diatonic collections (diatonic forms) can be 
traced in a precise manner. They show the ongoing validity of the philosophy of multiple perspectives, that gives rise to new 
mathematical constructions which are capable of tracing the uncountable nuances of musical activity. 
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Fig. 2 Measures 226–242 of Ponce’s Sonata no. 2, first movement. 

 
 

 
Fig. 3 E Aeolian to G# Aeolian, passing through E Lydian. 

 
 

References : [1] Bates, I. & R.C. Veltkamp “A Geometrical Distance Measure for Determining the Similarity of Musical 
Harmony”. Technical Report UU-CS-2011-015, May 2011, Department of Information and Computing Sciences, Utrecht 
University, Utrecht, The Netherlands. [2] Bates, I. “Vaughan Williams’s five variants of “Dives and Lazarus”: a study of the 
composer’s approach to diatonic organization”. Music Theory Spectrum, 34 (1) : 34–50. 2012. [3] Guerra, D. “Manuel M. Ponce: 
a study of his solo piano works and his relationship to Mexican musical nationalism”. Dissertation. UMI Microform 9722750 
Copyright 1997, by UMI Company, Ann Arbor, Michigan. [4] Hook, J. “Contemporary methods in mathematical music 
theory: a comparative case study”. Journal of Mathematics and Music, 7 (2) : 89–102, July 2013. [5] Hook, J. “Signature 
transformations”. In: Douthett, J., M. Hyde, C. Smith (Eds.) Music Theory and Mathematics: Chords, Collections, and Transformations. 
Rochester, NY: University of Rochester Press, 2008. pp. 137–160. [6] Pearsell, E. Twentieth Century Music Theory and Practice. 
Routledge, New York, 2012. [7] Ponce, M.M. Sonata No. 2 for piano, New York, Peer International Corporation, 1968. 
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Morales-Manzanares, Roberto 
LIM – University of Guanajuato (Guanajuato) & PMDM – UNAM (Mexico City) 
 
“Compositional Generation of Macro-Structures with Dynamical Systems in my Opera Dunaxhii ” 
 
Keywords : improvisation, CGMD, movement, gesture, dynamics in composition. 
 
Abstract : Skilled improvisers are able to shape in real time a music discourse by continuously modulating pitch, rhythm, 
tempo and loudness to communicate high level information such as musical structures and emotion. Interaction between 
musicians, corresponds to their cultural background, subjective reaction around the generated material and their capabilities 
to resolve in their own terms the aesthetics of the resultant pieces. In this paper I introduce CGMD, a multi-platform 
environment, which incorporates music and movement gestures from an improviser to acquire precise data and react in a 
similar way as an improviser. 
In this case CGMD takes samples from the Zapotec language’s rhythms, as well as from a particular improviser, and learns 
for each style a probabilistic transition automaton that considers gestures to predict the most probable next state of the 
Zapotec rhythm and musician style. In this paper I will demonstrate CGMD’s flexibility and potential to generate macro-
structures in my opera Dunaxhii in three acts for soprano, contra-tenor, baritone, chamber ensemble and live electronics. 

Moreira de Sousa, Daniel 
Universidade Federal do Rio de Janeiro (UFRJ) 
 
“Textural Contour: A Proposal for Textural Hierarchy through the Ranking of Partitions Lexset” 
 
Keywords : Musical Contour Theory, Theory of Integer Partitions, partitional analysis, musical texture, ranking. 
 
Abstract : This paper proposes a new application of the Musical Contour Theory (MCT), departing from the conception of 
Michael Friedmann (1985) and Robert Morris (1987, 1993), by extending its principles to the music textural domain. The 
MCT consists of a numerical abstraction of levels, ordered from 0 (lowest level) up to n-1 (where n is the number of different 
levels in the structure), describing the relative position among all levels according to some criterion. For example, a melodic 
contour noted < 0 2 1 > indicates a motive that begins at the lower pitch ascends to the highest one, ending at the 
intermediate one, with no concern about absolute pitches involved. This abstraction allows the establishment of relations 
among distinct motives based on its identity or related transformational process by application of canonical operations 
(inversion, retrograde, and retrograded inversion). This abstraction also enables the generation of derived contour using 
mathematic processes and describes information about contour’s structure. In spite of historical focus of MCT on the pitch, 
there are several studies that deal with other structural parameters using the same principle of abstraction. The main interest 
of the present paper lies in the measurement and comparison of distinct textures according to Wallace Berry’s (1976) 
definition of texture: a set of interactions and interrelations between sounding components. The methodology is related to 
the parameters of Partitional Analysis (henceforward PA; see Gentil-Nunes, 2009). PA is a new analytical tool for examining 
musical textures by combining textural analysis of Berry and the Theory of Integer Partitions (Andrews, 1984). This approach 
leads to some concepts that formalize the textural organization and their progression by numerical representations of musical 
concurrent ideas. Berry proposed a formal methodology for demonstrates textural configurations constructed from the 
comparison of basic features, like rhythmic profiles and contour, of the different sounding components. These configurations 
are read as integer partitions in PA. From observation of similarity and contrast of the components that constitute a textural 
configuration it is possible to establish a partition that summarizes the relations of musical elements. For example, three 
instruments may be organized following the partitions of number “3”: a three-part block [3], two-part block and a solo [2+1], 
and three-part polyphony [1+1+1]. From the assessing of binary relations inside the configurations, Gentil-Nunes proposes a 
pair of indices that expresses its internal relations: agglomeration (a), which concerns the thickening of the internal elements, 
defined by the collaboration between its elements (sound blocks); and dispersion (d ), which concerns the internal diversity, 
defined by the contrast between its elements (polyphony). 
Gentil-Nunes also proposes the partitional operators, which express the process of internal transformation involved in the 
progression of one partition to the next. The partitional operators are classified as positive or negative, according to the 
progressive or recessive characteristic of the transformations, and are classified, by the present author, into three groups: (1) 
simples, (2) compounds and (3) relational. In this paper only the simple operators are focused: resizing, revariance and simple transfer. 
Resizing (m) is an operator derived from the inclusion relation, where the antecedent partition is contained in the consequent, 
and its occurrence concerns an increment or decrement of one of the elements of the partition (relative to the thickness). For 
example, the partition [2] results in partition [3] using m+ and go to [1] using m–. Revariance (v) is also an operator derived 
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from the inclusion relation and its occurrence concerns the addition or subtraction of a new component of density-number 1 
(“density number” is Berry’s term to refer the total number of simultaneous voices or lines), changing the degree of 
polyphony. For example, the partition [1 2] results in a partition [1 1 2] using v+ and go to [2] using v–. Simple transfer (t ) 
derives from the use of both resizing and revariance operations in compensatory movements, resulting in a constant number of 
sounding factors originate from the internal reorganization of components in both thickness of the parts and number of 
parts. The density-number on simple transfer is constant, which implies that the positive and negative notions are based on 
common practice, where polyphonic partitions are considered as more complex than partitions massive ones and this 
difference of degree of complexity determines the movement of it. For example, the partition [1 2] results in a partition [1 1 
1] using t+ and in [3] using t–. From the adjacent of the partitional operators’ relations, a hierarchy for each individual 
process is established, resulting in a textural configuration taxonomy, using the Hasse Diagram based on the Partitional Young 
Lattice (PYL). The PYL is an abstraction that encompasses all partitions (with their correspondent indices a, d ) from 1 to a 
given number, organized by partitional operators involved on the partitions lexset (collection of lexical set formed by all 
partitions from 1 to the number of sounding factors involved). This organization allows the achievement of a textural contour 
by applying the abstraction of MCT on the PA’s concepts, considering the relative textural complexity of the partitions from 
the simplest to the most complex. Through this abstraction, one can compare two apparently different textural progressions, 
relating them to the same textural contour that can be used both as an analytical tool and as a compositional resource. The 
partitions form a partially ordered set, i.e., the ranking is not linear. 
This paper proposes a ranking based on binary comparisons between partitions, using the common practice found at the 
textural vocabulary (like the simple transfer orientation) and the partitional operators as a guide. Each operator drawn a path of 
partitions with its own ranking based on the orientation of movement. The methodological proposal by Ryszard Janicki 
(2008) for ranking comparison inside partial orders is also used as reference. The relative complexity level of each partition in 
a textural progression is defined by the partitional operators involved. If the progression occurs in a single partitional 
operator line, the hierarchy forms a linear ranking, but most of musical textural progressions uses a group of partitions that 
belongs to more than one partitional operator path and, therefore, the linear ranking is not possible in these cases. Some 
partitions pairs are incomparable. For example, the partitions [2] and [1 1] are founded at simple transfer path and the analysis 
based on simple transfer concept reveals that [1 1] is more complex than [2]. The partitions [2] and [3] belongs to the same 
resizing path. The analysis reveals that [3] is also more complex than [2]. The partitions [1 1] and [3] do not have any particular 
path in common, which implies that they are incomparable. The ranking proposed in this study examines these relations and 
proposes a linear order of levels to the weak order partitions on the PYL based on musical common practice. The level of 
complexity of incomparable partitions is numbered inside the same order level but with a decimal number that indicates the 
subtler difference of the amount of real components (group of congruent elements on partition). For example, on the 
partition progression [1 1] [2] [3], the textural contour will be < 1.2 0 1.1 >. The proposal for decimal numbers instead of 
using only integers as in MTC abstraction is intended to reveal that: (1) the textural progression has incomparable partitions; 
(2) the density-number relation between the incomparable partitions and (3) the structural relation between the real 
components of partitions that share the same level of complexity, as example below. The paper concludes with an example of 
methodological application of the textural contour and ranking partitions.  
 
References : [1] Andrews, G. The theory of partitions. Cambridge: Cambridge University Press, 1984. [2] Berry, W. Structural functions 
in Music. New York: Dover Publications, 1987. [3] Friedmann, M.L. “A Methodology of the discussion of contour: its 
application to Schoenberg’s music”. Journal of Musical Theory, 29 : 2, 1985, pp. 223-48. [4] Gentil-Nunes, P. “Partitional 
analysis: mediation between musical composition and the theory of integer partitions”. 2009. Thesis (Ph.D in Music). Rio de 
Janeiro: Federal University of Rio de Janeiro State (UNIRIO). [5] Morris, R.D. Composition with pitch-classes: a theory of 
compositional design. New Heaven: Yale University Press, 1987. [6] Morris, R.D. “New directions in the theory and analysis of 
musical contour”. Music Theory Spectrum, vol. 15, 1993, p. 205-28. [7] Janicki, R. “Ranking with Partial Orders and Pairwise 
Comparisons”. Paper presented at the meeting of the RSKT, 2008. 
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Noll, Thomas 
Departament de Teoria i Composició, 
Escola Superior de Música de Catalunya (Esmuc, Barcelona) 
 
PLENARY LECTURE: 

“The Sense of Subdominant : A Fregean Perspective on Music-theoretical Conceptualization” 
 
Keywords : diatonicity, formal concept analysis, well-formed scales, diazeuctic scales, structural modes, sense and reference in 
music. 
 
Abstract : This case study in mathematical conceptualization investigates selected aspects of the music-theoretical meaning of 
the term subdominant. The subject will be approached from three sides. Gottlob Frege’s distinction between sense and reference 
as two types of meaning serves as a unifying idea for this investigation. (In a celebrated example Frege points out, that the 
expressions “morning star” and “evening star” have the same referent; namely the planet Venus. And he observes that the 
proposition “morning star” = “morning star” is trivially true, while the proposition “morning star” = “evening star” 
expresses a true insight. Therefore, he argues, the sense of “morning star” must be different from the sense of “evening 
star”). 
(1) The term subdominant lends itself in a special way for an illustration of that distinction. Based on the historical meanings of 
the term subdominant a new concept is introduced and investigated: the diazeuctic scale, a well-formedly generated scale modulo 
octave, whose diazeuxis (the difference interval between generator and cogenerator) is a step interval. This concept 
encompasses precisely those scales where the two senses of subdominant intersect: Jean-François Dandrieu (1719) suggests a 
mode of presentation where reference is being made to the scale degree below the dominant. Jean-Phillippe Rameau (1726) 
adopts the term in order to underlay it with a different mode of presentation, namely as a scale degree a fifth below the tonic. 
Both senses are instances of complementary paradigmatic tone relations and deserve to be studied in combination. In analysis 
they interact with syntagmatic relations such as pre-dominant or post-tonic (e.g. in post-cadential overshooting). 
(2) Mathematically equivalent (or closely related) concepts are revisited: Eytan Agmon (1989): diatonic scale, John Clough and 
Jack Douthett (1991): hyperdiatonic scale. I argue that, and illustrate how, the detection of such equivalences augments the 
amount of music-theoretical knowledge. Formal Concept Analysis (Ganter& Wille 1999) serves as a theoretical and 
methodological background for revisiting the scale taxonomy by Clough et al. (1999). I argue, that the detailed distinction of 
different senses (modes of presentation) on the paradigmatic level, provides a useful refinement of the conceptual inventory 
for analytical purposes. 
(3) I discuss the meaning of subdominant in the context of the structural modes as proposed by Karst de Jong and Thomas Noll 
(2011). The underlying structural scale is the smallest instance of a diazeuctic scale. De Jong and Noll call the three scale 
degrees in each of these three modes tonic, subdominant and dominant and thereby interpret the three tonal functions in purely 
scale-theoretic terms. Their emphasis of the dual articulation of tonerelations through structural steps (M2 and P4) and 
structural shifts (P5 and P4) is reminiscent of the two senses of subdominant as described in (1). The subdominant in the first 
structural mode P4-M2-P4 also behaves as in (1). But the subdominant in the second structural mode M2-P4-P4 (typical for II 
V I progressions) has a fifth contiguity with the dominant rather than the tonic. These modal refinements will be carried out. 
 
References : [1] Agmon, E. 1989. “A Mathematical Model of the Diatonic System”. Journal of Music Theory 33/1: 1–25. [2] De 
Jong, K. & Th. Noll. 2011. “Fundamental Passacaglia: Harmonic Functions and the Modes of the Musical Tetractys.” In 
Mathematics and Computation in Music: Proceedings of the MCM 2011, ed. C. Agon et al. Berlin: Springer. [3] Frege, G. 1892. “Uber 
Sinn und Bedeutung”. Zeitschrift für Philosophie und philosophische Kritik, 100: 25–50. [4] Noll, Th. 2014. “The Sense of 
Subdominant: A Fregean Perspective on Music-theoretical Conceptualization”. Manuscript. [5] Rameau, J.-Ph. 1737. 
Generation harmonique. Paris: Perrault. [6] Regener, E. 1973. Pitch Notation and Equal Temperament: A Formal Study. Berkeley: 
University of California Press. 
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Norgaard, Martin 
Georgia State University (Atlanta) 
 
“How Learned Patterns Allow Artist-Level Improvisers to Focus on Planning and Interaction During 
Improvisation” 
 
Keywords : improvisation, jazz, pattern, rules, corpus research, computer modeling. 
 
Abstract: Improvisation is a component of musical practice across idioms and cultures, however, the cognitive mechanisms 
underlying extemporaneous musical performance are not well understood. Specifically, the function of learned auditory and 
motor patterns is hotly debated [see: 1, 3, 6). Here I summarize the findings from a series of studies in which we sought 
evidence of the cognitive basis for improvisation in solo performance settings using qualitative [2], quantitative [4], computer 
modeling [5], and electroencephalography (EEG) paradigms. In interviews conducted with expert jazz improvisers about 
solos they had just completed, participants characterized a process in which their thoughts were primarily engaged in planning 
and evaluating larger architectural structures with moment-to-moment decisions seemingly determined through learned 
procedures enacted outside of conscious awareness [2]. To further investigate the contribution of non-conscious processes to 
the moment-to-moment decisions of skilled musical improvisers, we examined the ability of advanced jazz pianists to 
improvise while completing a secondary, nonmusical counting task. We found an increased use of learned auditory and motor 
patterns when participants were engaged in the secondary task [4]. In a separate computer modeling project, we created an 
algorithm capable of creating a novel musical output based on patterns extracted from a given corpus [5]. Finally, using an 
EEG paradigm we recorded evoked potentials during a short improvisatory task (results of this study will be available for this 
presentation). Taken together, our findings demonstrate that expertise in jazz improvisation is supported by an implicit 
process for generating music that effectively lowers demands for consciously-mediated control. Furthermore, it appears that 
the use of learned patterns is central to this mechanism. We believe this automatic generative process frees the advanced 
improviser to concurrently focus on larger architectural structures and interaction with other ensemble members. 
 
References : [1] Johnson-Laird, P.N. (2002). “How jazz musicians improvise”. Music Perception, 19(3), 415–442. [2] Norgaard, M. 
(2011). “Descriptions of improvisational thinking by artist-level jazz musicians”. Journal of Research in Music Education, 59(2), 
109–127. [3] Norgaard, M. (2014). “How jazz musicians improvise: The central role of auditory and motor patterns”. Music 
Perception, 31(3), 271–287. [4] Norgaard, M., S.N. Emerson, K.D. Braunsroth & J. Fidlon. (2014). “Creating under Pressure: 
Effects of divided attention on the improvised output of skilled jazz musicians”. Manuscript in preparation. [5] Norgaard, M., 
J. Spencer & M. Montiel. (2013). “Testing cognitive theories by creating a pattern-based probabilistic algorithm for melody 
and rhythm in jazz improvisation”. Psychomusicology: Music, Mind, and Brain, 23(4), 243–254. [6] Pressing, J. (1988). 
“Improvisation: Methods and Model”. In J.A. Sloboda (ed.), Generative processes in music (Paperback., pp. 129–178). Oxford, 
England: Oxford University Press. 

Paredes-Bárcenas, Goretti & Jesús A. Torres 
Luthiers School (Escuela de Laudería – INBA, Querétaro, Qro.) 
 
“Comparison of Empirical and Specific Methods to Evaluate if the Construction of Free Plates of a 
Violin are Already Finished” 
 
Keywords : luthier, violin, resonance frequencies, vibration modes, measurements. 
 
Abstract : Traditionally, violin makers have paid great attention to the vibrations of free top and back plates of their 
instruments. However, due to variations in the wood, even between two adjacent pieces of the same tree, cannot copy each 
measurement in the parts of an instrument with good sound and create another instrument with the same qualities of the 
original one. In the way to recreate a good violin, what does matter is not simply the geometric measurement, but also one 
must involve measurements related to the vibrational properties of wood. 
Often—at least in the Mexican context—the vibrational behavior of plates is not deeply enough studied by luthiers; however, 
such study is necessary to gain a more accurate control over planned results. As a standard guide applied during the 
construction of musical instruments, this analytical and constructional process can be used to estimate modifications to 
achieve desired results. Therefore, a more precise measurement protocol for the construction of plate-instruments would 
contribute to systematize and improve these constructional processes. 
Many specialists have participated investigating vibrations on violin plates, since 19th century when Savart started reporting 
some related experiments. During 20th century, Hutchins (1983) led a group of scientist in order to study free top plates 
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before assembly in several instruments. His findings have been corroborated by more recent research. Moral and Jansson 
[see: 2] reported that free modes are different to modes of assembled instruments, but similarities are clear between modes 2 and 5 of 
the free tops with C3 and C4 mode of assembled instruments. 
This paper shows that when free plates are evaluated by specific methods measuring vibrations of the plate, and by 
empirically “feeling” the plate, the results are equivalent. In other words, systematic measurement matches with the empirical 
evaluation of luthiers. However measurements can be taught in a simple and systematic way, so that everyone—even without 
knowledge on the luthiers’ subjects—can apply it, while the empirical method involves a subjective evaluation that depends 
on the “feeling” of a teacher, as well as on other specialized experience on the subject. 

References : [1] Hutchins, C. (1983). “Plate tuning for the violin maker”. CASJ (39):25–32. [2] Moral, A. & E. Jansson (1982). 
“Input admittance, eigenmodes, and quality of violins”. Report STL-QPSR (2–3):60–75. 

Pareyon, Gabriel 
CENIDIM – INBA (Mexico City) 
 
Welcome lecture (1): 

“A Survey on the Mexican Tradition of Music and Mathematics” 
 
Keywords: Mexico’s history, music, mathematics. 
 
Abstract : This is a minimal introduction on the history of the Mexican tradition of music and mathematics. The goal of this 
short lecture is to share with the audience a cultural basic framework for understanding the significance of this Congress in a 
national and international context. Although the subject is extremely rich, it will be limited to a selection of historic highlights 
including aspects of ancient and modern Mexico. This survey stops at the last quarter of the 20th century. The continuation of 
this history will be elaborated during the development of this Congress, by several lectures, mainly those registered within our 
special panel on Julián Carrillo. 

Pareyon, Gabriel 
CENIDIM – INBA (Mexico City) 
 
Special panel “Mathematics and Aesthetics in Julian Carrillo’s (1875-1965) work”: 
“Carrillo’s vs. Novaro’s Tuning Systems Nested within the Arnold Tongues” 
 
Keywords : Carrillo, Novaro, tuning, scaling, microtonality, Farey trees, Arnold tongues. 
 
Abstract : Farey trees and Arnold tongues have been suggested [1:354–371] as dynamical means for organizing self-similarity 
scaling in music. For analytic and comparative-descriptive purposes, this lecture adapts Arnold tongues for the study of the 
divergences between Carrillo’s and Novaro’s tuning systems nested within the Arnold tongues. 

1. Introduction 
It was until late 20th century, when both philosophy of science and applied mathematics within the new dynamic paradigm, 
agreed to pay attention to perceptual systems as systems of knowledge generation; and vice versa, the evolutionary preceptual 
systems as systems of perception. This idea has its foundations in recent findings on information theory, genetics, linguistics 
and the study of emerging patterns [e.g. see, 1, 2, 3, 4], and is probably due to a paradigmatic connection of thermodynamics 
with new branches of science patronized by physics and mathematics. Music and musicology are beneficiaries of this, since 
both may easily be conceived as the practice and study of a certain kind of dynamical systems. Under this conception, the 
“sonic atom”, timbral roughness, and generation and transformation of musical scales—in its broadest sense—, forms and 
structures, can be studied as aspects of a same phenomenon. 
 

2. Arnold tongues, diatonicism and multi-scalar dynamics 
This approach to musical complexity may serve to explain how endorhythms contribute to perform and elaborate musical 
structuration and meaning. Human and in general living organisms’ endorhythms seem to be musical or pre-musical features of 
an evolutionary society (an idea prevailing in many musicians, from pre-Classicism to nowadays theorist and composer Erv 
Wilson); thus, “life” with its rhythmic and harmonic interpretations would be rather phases of a same, unique physical process. 
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The 19th century concept of Farey trees—a simple arrangement of numerical self-structuration—is closely related to many 
other self-referential algebras studied by modern mathematics. Introducing a differential approach to successions within these 
arrangements may lead to emerging patterns with “new” features and very diverse behaviour. As a mathematical device, the 
Arnold tongues fulfill this approach, as it is analogical to essential self-structuring patterns in living organisms codification 
(e.g. basic recursive genetics) and more sophisticated self-structuring grammars in verbal and non-verbal communication. 
Even the (Peirce)–Schenker–Lerdahl cognitive constraints of musical systems and hierarchical self-structuring, reasonably fit 
within this tree-model  which is not necessarily triadic or n-adic, but n-layered, n-hierarchical (or rhizomatic ), dense and self-
contained. The embedding of recursive grammars within themselves, e.g. chromaticism whithin diatonicism, and Diatonicism 
(let this concept be useful for an algebraic-geometric definition, and not especially for the naif one) can be fruitfully 
associated to a multi-scalar dynamics of music. 

3. Carrillo vs. Novaro in a dynamical context 
Since the identification of initial conditions of a system is usually a basic start point of any dynamical system, the dynamical 
modellation of music must somehow be of an analogic (i.e. proportional, synecdochic) nature. From the viewpoint of this 
proposal, the initial conditions of a musical system must be explicitly related to initial rules (i.e. possible relationships within a 
universe), such as well-formedness of a pitch scale, or rhythmic proportionality (motivic structure, metre, phraseology). This 
still valid for any function within a musical grammar regardless its order of complexity, and also is closely related to the 
emergence of musical Gestalt, in its turn crucial for meaning of a “grammar in context” (leading to pragmatics). 
Julian Carrillo (1875–1965) and Augusto Novaro (1891–1960) [see: 6, 7, 8] are pioneering—at first glance opposed—theorists 
in the development of tunings and scalar systematization beyond classical tonality. Nevertheless both of them pursue a musical 
grammar based on their findings of physical tuning. [8] compares their tuning systems, albeit without an analogic context for 
analytic direct comparison, due to the profound theoretical differences between Carrillo and Novaro. Instead, within a 
dynamical context, these and other “microtonal” grammaticalities may be analogically described, analyzed and used for self-
structuring, when nested whithin the Arnold tongues. For this goal, irrational grammars (i.e. not based on Pythagorean or 
similar ratios), such as Carrillo’s one, must be syntesized as an approach to an Arnold set—an exercise indeed comparable to 
any musical approach to an ideal tuning or an ideal grammar. This lecture will discuss the features of these different systems as 
nested within the Arnold set, and the Arnold tongues as a useful tool for musicology and music composition. 
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Illustration in the previous page: Arnold tongues from a differential equation first published in [5], 
K θi +1 = θi + Ω –
2π sin(2πθi ), 

here adapted as a harmonicity chart mod   for historical musical ratios, including (in its lowest part) Novaro’s ratios and 
Carrillo’s succesive collection of intervals obtained from ki√2 series. 
References : [1] Pareyon, G. On Musical Self-Similarity: Intersemiosis as Synecdoche and Analogy, ISS, Acta Semiotica Fennica 39, 
Helsinki/Imatra. 2011. [2] Large, E.W. “A Dynamical Systems Approach to Musical Tonality”. In R. Huys & V.K. Jirsa 
(Eds.), Nonlinear Dynamics in Human Behavior, SCI 328, Springer-Verlag Berlin/Heidelberg; pp. 193–211. 2010. [3] Voss, R.F. 
“1/f Noise and Fractals in DNA-base Sequences”. In A.J. Crilly, R.A. Earnshaw & H. Jones (Eds.) Applications of Fractals and 
Chaos: The Shape of Things, Springer-Verlag, Berlin; pp. 7–20. 1993. [4] Hřebíček, L. “Persistence and Other Aspects of 
Sentence-Length Series”, Journal of Quantitative Linguistics, vol. 4, no. 1–3; pp. 103–109. [5] Bak, P. “Commensurate phases, 
incommensurate phases and the devil’s staircase”, Reports on Progress in Physics, 45:587–629. 1982. [6] Carrillo, J. El infinito en las 
escalas y los acordes, Editorial Sonido 13, 81 pp. 1957. [7] Carrillo, J. Leyes de metamorfosis musicales, Talleres Gráficos de la Nación, 
89 pp. 1949. [8] Novaro, A. Sistema natural de la música, Manuel Casas. 1951 (1933). [9] Conti, L. Suoni di una terra incognita: Il 
microtonalismo in Nord America (1900–1940), Libreria Musicale Italiana. 2005. 

Paz, Iván 
Departament de Llenguatges i Sistemes Informatics, Technical University of Catalonia (Barcelona) 
 
“A Fuzzy Logic Approach of High Level Musical Features for Automated Composition Systems” 
 
Keywords : Fuzzy inductive reasoning, musical coherence, algorithmic composition, musical representation, musical features. 
 
Abstract : Automated algorithmic composition systems are now well-understood and documented [see: 1, 3]. However, their 
capacity for accurately manage high level musical features such as coherence, emotion or personality, is still object of discussion [6]. 
On the search for designing more effective systems that exhibit greater expressiveness, latest attempts have proceeded by 
extracting representations of those features. However, these representations appear commonly as a side effect of the research 
made in machine learning for the construction of composition or interactive systems. The fact that machine learning 
processes can effectively capture such features to a higher degree is still unclear and much research remains to be done in this 
area. Moreover, designed systems have not explicitly incorporated perception and semantics of the generated music, 
excluding the psychological sensation of the musical form perceived by the listener. Attempts to do this often deal with 
machine listening techniques that need high computational capacity, and the modules designed for the evaluation and 
adjustment of the outputs commonly operate by using a pre-established, symbolic domain [2]. A usual example is the use of 
fitness functions in genetic algorithms to modify the outputs until the desired ones are obtained. 
In the present work, a fuzzy system approach for modeling high level features for automated algorithmic composition is 
discussed. Fuzzy systems are based on fuzzy logic theory [16], that deals with objects that are approximate rather than fixed 
and exact. Fuzzy systems require less amount of resources for processing—useful in real time situations—making them more 
portable, and are not restricted to pre-established structures for the evaluation modules, allowing systems to include human 
(and its associated psychological perspective within the design or the evaluation cycle) without having a predefined 
representation process of the desired output. This allows the system to extract the musical representation of the expert 
experience and translate it in terms of combinations of variables and features, and then, for example, to produce consistency 
between musical parts, through the subjective evaluation to listen combinations. 
The methodology developed incorporates Fuzzy Inference and Inductive Reasoning systems [12] to evaluate coherence between 
algorithmically produced musical outputs. Firstly, the generating algorithms are discussed in the context of musical style. 
Then, the produced outputs evaluated by experts are presented. The output and its evaluation were used as input data to train 
the system, and the variables that produce “coherent” outputs and the relationships among them where identified as rules. 
Finally, the extracted rules and results are discussed in the context of the musical form and taking into account the 
psychological perception. The generated rules were incorporated to modify the original algorithms and new patterns were 
generated and compared with the original ones by using music information retrieval tools. 
 
References : [1] Collins, N., 2009. “Musical Form and Algorithmic Composition”. Contemporary Music Review, Vol. 28, No. 1, 
February 2009, pp. 103–114. [2] Collins, N., 2012. “Automatic Composition of Electroacoustic Art Music Utilizing Machine 
Listening”. Computer Music Journal, 36:3, pp. 8–23, Fall 2012, The MIT Press. [3] Nierhaus, G., 2009. Algorithmic Composition. 
Paradigms of Automated Music Generation. Springer, Wien, New York. [4] Castro, F., A. Nebot & F. Múgica, 2011. “On the 
extraction of decision support rules from fuzzy predictive models”. Applied Soft Computing, 11 (4), 3463–3475. [5] Collins, N., 
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2003 “Algorithmic Composition Methods for Breakbeat Science” ARiADA No.3, May 2003. [6] Williams, D., A. Kirke, E.R. 
Miranda, E.B. Roesch, S.J. Nasuto, 2013. “Towards Affective Algorithmic Composition” in (G. Luck & O. Brabant, Eds.) 
Proceedings of the 3rd International Conference on Music & Emotion (ICME3), Jyväskylä, Finland, 11th – 15th June 2013. [7] Escobet, 
A., A. Nebot, F.E.Cellier, 2008. “Visual-FIR: A tool for model identification and prediction of dynamical complex systems”, 
Simulation Modeling Practice and Theory, 16(1), pp. 76–92. [8] Hannon, E.E., J.S.Snyder, T. Eerola & C.L. Krumhansl, 2004. “The 
Role of Melodic and Temporal Cues in Perceiving Musical Meter”. Journal of Experimental Psychology: Human Perception and 
Performance, 30(5), 956–974. [9] Kirke, A., E.R. Miranda & S.J. Nasuto, 2012. “Learning to Make Feelings: Expressive 
Performance as a part of a machine learning tool for sound-based emotion therapy and control. In Cross-Disciplinary Perspectives 
on Expressive Performance Workshop. Presented at the 9th Int’l Symposium on Computer Music Modeling and Retrieval, London. 
[10] Kosko, B. (1986). “Fuzzy Cognitive Maps”. Man-Machine Studies, 24, 65–75. [11] Nebot, A. & F. Múgica, 2012. “Fuzzy 
Inductive Reasoning: a consolidated approach to data-driven construction of complex dynamical systems”. International Journal 
of General Systems, 41(7): 645–665. [12] Pareyon, G., 2011. On Musical Self-Similarity Intersemiosis as Synecdoche and Analogy. ISS, 
Acta Semiotica Fennica 39, Helsinki/Imatra. [13] Shapiro, P. 1999. Drum’n’ bass, the Rough Guide. Rough Guides Ltd. [14] 
Spring, G. & J.T. Hutcheson. 1995. Musical Form and Analysis, Madison, Wis., Brown & Benchmark. [15] Typke, R., F. 
Wiering, R.C. Veltkamp, 2005. A Survey of Music Information Retrieval Systems. Queen Mary University of London. [16] Zadeh, 
L., 1965. “Fuzzy Sets”. Information and Control, 8: 338–353. 

Pina-Romero, Silvia & Gabriel Pareyon 
CUCEI – Universidad de Guadalajara (Guadalajara) & CENIDIM – INBA (Mexico City)  
 
“Phase Synchronization Analysis as Fingerprint Classifier for the Teponaztli’s Timbral Features” 
 
Keywords : phase synchronization, timbre classification, teponaztli, percussion classification, idiophone. 
 
Abstract : It has long been noticed that a wide variety of coupled oscillatory phenomena synchronize, for example the lighting 
of fireflies, the singing of frogs and pendulums of clocks [see: 1, 2]. Synchronization can occur regarding different features of 
the oscillatory phenomena, such as phase or frequency. In this work we refer to phase synchronization. The phase of an 
oscillator at any given time is a quantity that increases 2π in each cycle and corresponds to the fraction of a cycle which has 
elapsed, relative to an arbitrary point. 
A particular kind of phase synchronization, when one of the oscillators leads the oscillation of the overall system due to the 
tendency of the system to oscillate at certain frequencies (the physical properties of the oscillators involved) is known as 
resonance [1, 3]. Specifically, our work focuses on damped resonance but the framework applies to the more general case of 
synchronization. 
Our contribution is the analysis of the timbral features of the teponaztli in the context of its phase synchronization. Eventually 
we propose the generalization of this analysis for a variety of idiophones. The teponaztli is a slit drum native to Mexico; a 
unique kind of idiophone made of a single piece of carved wood, with two strips—rarely three or more—which are hit by a 
drumstick and produces two different pitches. We study typical teponaztli of two strips, tuned to a harmonic interval which 
to the Western, modern ear, falls nearby a “third or fourth” (with relative roughness, sometimes unfocused because of the 
quality of the wood’s instrument). Given that the instrument is made of a single piece, we can conceive it as a coupled 
oscillatory system which may synchronize its phases at the moment of vibrating (from the attack to the end of the 
resonances). Our hypothesis is that the measurement of this synchronization and its evolution, reflects key features of the 
instrument timbre. 
The experimental set up is described next. For each teponaztli, three sets of three pulses were analyzed, each set of pulses 
using the exact same set up and protocol except for the drumstick, which changed from soft, medium, and hard. For the first 
pulse the larger tongue was fitted with a cardioid microphone while the other one was fitted with a transducer microphone, 
then, the larger tongue was hit once. For the second pulse, the microphones were exchanged and this time the smaller tongue 
was hit. Finally, for the third pulse, both tongues featured transducers and both were hit once simultaneously. This was 
repeated for each kind of drumstick. 
Each pulse was treated separately, but in all three cases, both, the recording of the sound produced by the vibration of the hit 
tongue, and the recording of the vibration of the tongue obtained via a transducer, are time series from which it is possible to 
obtain respective phases. The recordings were cut starting at the attack and ending, when oscillations had completely stopped. 
To extract the phase a complex signal is constructed via the Hilbert transform as follows; for each time series sj (t ) with 
j ={1,2}, which correspond to each of the strips of the teponaztli, we generate a complex signal (1): 

ζ j (t )= sj (t )+ i sj H (t )  ,      (1) 
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where sj H (t )  is the Hilbert transform as in (2), that is: 
 

sj H (t )= π - 1  P .V. ∫
∞

∞− −τ
τ

t
s )(

 dτ  ,     (2) 

where P. V. refers to the principal value, and from which equation (3) is obtained, 

ζ j (t )= Aj (t )e i φ j (t ) .      (3) 

Equation (3) yields the functions for instantaneous amplitude and phase, Aj (t ) and φj (t ), respectively. 
Once the phases are obtained the synchronization index is computed. To do so, we use the stroboscopic approach and 
conditional probability. In this context, the synchronization index is a number between 0 and 1, where 1 is complete 
synchronization and 0 represents total lack of synchronization. 
Each recording is divided in ten windows of the same length, and a synchronization index is calculated for each of them. 
Then an overall index is obtained by averaging these partial indices.  
In order to calculate each index, both phase functions are mapped around a circle by taking them modulus 2π. A parameter a 
is selected and the interval [0,2π] is divided in a subintervals, Ii with i ={1, ... a}, of size 2π/a which cover the circle; a partial 
synchronization index is obtained for each of these subintervals. More specifically, the partial synchronization index, λi , 
represents the probability of having the phase of one of the oscillators in a certain subinterval Ii , given that the phase of the 
other oscillator is at that same interval, this is: 

λ i  = P (φ 2 ( t )  ∈  I i ∣φ1( t )  ∈  I i ) ,    (4) 

with t inside the time window in question. 
Once the phase functions are mapped around a circle, the values of the phase of one of the oscillators (the instrument strips) 
are counted and recorded every time the value of the phase of the other oscillator falls inside a given interval Ii . 
Let Ml be the number of occurrences of the phase of the leading oscillator that fall inside the Il  interval, and let vl with l ={1, 
…, Ml } be a vector containing the corresponding values of the phase of the other oscillator at those specific times; then the 
partial synchronization index for the l-th interval is  

λ l  = ∑
=

lM

j

i

l

e
M 1

1 vi        (5) 

  
Finally, all partial indices are averaged to get the synchronization index Л in each time window 
 

Л  =  
a
1  ∑

=

a

i 1
 λ i .            (6) 

 
The classification of this synchronization and its evolution in time may turn into a new method for classifying timbre in 
idiophones which do not have conventional, fix tuning. Furthermore, this classification may contribute to analyze the 
relationship between timbre and self-structuring in music composed for idiophones. 
 
References : [1] Pikovsky, A. & J. Kurths. Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press, 
Cambridge, 2003. [2] Rosenblum, M. et al. “Synchronization approach to analysis of biological systems”, Fluctuation and Noise 
Letters, 4 (1); pp. L53–L62 (2004). [3] Rosenblum, M. et al. “Phase synchronization: from theory to data analysis” in (F. Moss 
& S. Gielen, Eds.) Handbook of Biological Physics, Elsevier Science. v.4. Neuro-informatics, Ch.9, pp. 279–321 (2001). 
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“The Musical Experience between Measurement and Computation: from Symbolic Description to 
Morphodynamical Approach” 
 
Keywords : computation, measurement, musical space, set theory and algebra, spectromorphology, morphodynamics. 
 
Abstract :  
1. Introduction 
Music and mathematics have a lot of common grounds. They both involve processes of thought, but where mathematics is 
concerned basically with symbols without any physical connection to the world, music has sound as its major category. 
Music, in this view, is characterized by a sonorous articulation over time, which can be described in physical terms. Yet, it is 
possible to conceive of music also at a virtual level of imagery and to carry out symbolic computations on mental replicas of 
the sounds. The major aim of this contribution, therefore, is to explore some basic insights from algebra, geometry and 
topology, which might be helpful for an operational description of the sounding music. Starting from a conception of music 
as a formal system, it argues for a broadening and redefinition of the concept of computation, in order to go beyond a mere 
syntactic conception of musical sense-making and a mere symbol-processing point of view. 

2. Experience and computation: internal and external semantics 
Computations, which take as a starting point a set of elements to operate upon, are considered mostly from a symbol-
processing point of view. The basic idea is formal symbol manipulation by axiomatic rules, whith a complete conceptual 
separation from their physical embodiment. As such, it is by definition implementation-independent and finds its application 
in computer programs, which handle discrete symbols and discrete steps in rewriting them to and from memory to a 
sequence of rules. The steps can only be defined by a measurement process, and the symbols are records of a measurement. The 
time of measurement, further, does not proceed simultaneously with the time of the dynamics, which means that the 
sequence of computational steps is “rate-independent”. Formal systems, in other words, must be free of all influence other 
than their internal syntax. To have meaning, however, they must be informally interpreted, measured, grounded or selected from the 
outside, which involves a transition from rate-independent programmed computation to a rate-dependent dynamic analog 
with measurementss proceeding in real-time [see: 8]. 
Dealing with music, however, is not merely symbolic modeling and computation. It also involves processes of sense-making 
that match the auditory input against a knowledge base and coordinate it with behavioral responses. The music user, in this 
view, can be considered as a learning device, made up of sensors, coordinative computations and effectors, which are related 
to the primitive functionalities of measurement, computations and control [3]. Each of these functions can be an arena for 
adaptation, but contemporary conceptions of learning devices have focused almost exclusively on coordinative, “cognitive” 
adaptation, which mostly neglects the possibility for adaptation at the level of perception and action. As such, they are in line 
with the current trend of syntactization of semantics, which began in the 1930s with the “logical semantics” of Carnap and 
the “model-theoretic semantics” of Tarski. This syntactization is accomplished by completely encoding the world, so that 
symbols are seen in relation to a completely logical-symbolic structure, postulating merely sets of “possible worlds” and 
“world-states” without having to specify any sets of observables or having to verify any truth values with respect to the 
external world. If the symbols are without relations to the external world, we can conceive of them in terms of “internal“ 
semantics; if they establish a relation to the outer world, they involve an “external” or “real semantics” [2].  

3. Measurement and symbolic play 
The notion of measuring device was introduced by Hertz who pointe out the possibility of linking particular symbol states to 
partiucular external states of affair. A measurement, in his view is a pointer-reading of an observable that functions as the 
initial condition of a formal model for predicting the value of a second one. It reflects the particular interactions of the 
measuring apparatus with the external world and allows the device to carry out predictive arithmetic and/or logical 
calculations on the pointer-signs [3]. The role of symbolic play must be considered here as formal computation is carried out 
on the symbolic counterparts of the observables, and not on the observables themselves. 
Computations are thus considered mainly from a symbol-processing point of view. There is, however, a broader conception 
of computation, which considers the input/output couplings, and which can be handled in terms of modeling or predictive 
computations [1]. Computation, in this view, embraces the whole field of mental operations, which can be performed on 
symbolic representations of the sounds. Applied to music, this should mean that we should conceive of musical “objects” 
and “processes” in terms of formal and syntactic operations, somewhat analogous to the mathematical activities as counting, 
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measuring, classifying, comparing, matching, ordering, grouping, patterning, sorting, labeling, inferring, modeling and 
symbolic representation. Cognitive operations, in this view, are internalized actions, which can be reduced to the processes of 
classifying, seriating, putting in correspondence and combining, which, in turn, are related to the logico-mathematical 
operations, which are abstractions of concrete operations as collecting, ordering and putting things together [10].  

4. Music as an algebraic structure: the concept of musical space 
The computational approach to music stresses the possibility to carry out symbolic computations on mental replicas of the 
sounds. It takes as a starting point a set of elements upon which to operate, which can be labeled symbolically as discrete 
things with unit character, but which can have a continuous representation as well. The elements, therefore, can be 
characterized as variable functions of time, which can be of any length, ranging from discrete focal points to larger temporal 
events. Their delimitation, then, can be described in algebraic terms by defining them as variables, taking as a starting point a 
domain that represents the totality of sounds. It is possible, further, to reduce this sonic world or sonic unviverse to its 
arithmetical substrate, and to conceive of it also as a musical space, consisting of a set of points, each of them corresponding to 
a number. Musical figures can be delimited in this space and can be considered as configurations of points, which can move 
from one configuration to another. The geometric space that figures as a framework for these transformations has to take 
account of this and must be chosen according to some criteria (every possible point must have an allocation in the space, and 
every transition from one configuration to another must be possible). This calls forth a dynamic conception of geometric 
space as a collection of points. Spaces, then, are networks within which points can be fïxed by giving them some numbers, 
called coordinates. 
Musical space, accordingly, can be conceived as a collection of elements, that can be described in a formal way as an algebraic 
structure, i.e. a non-empty set together with a collection of (at least one) operations and relations on this set. The central 
problem, however, is the definition of the elements, as musical space and time have to be integrated in the definition, 
together with set theoretical, geometrical and algebraic points of view. 

5. Musical space as topological space 
Musical space can be defined as a collection of points that constitute the domain (the arguments) upon which predication 
processes can be applied. The result of these processes are propositions that assign some general term to individuals. 
Predication, however, does not apply to points, that have no extension, but to units that are recognizable as such. At a formal 
level these units are systems of isolated points in one or more dimensions, somewhat comparable to the point-events of 
physics. It is necessary, therefore, to construct a mathematical model for the description of the physical domain (the 
sonorous universe) from which the units can be recruited, and for giving a numerical description of them. Applying this way 
of thinking to the domain of music provides an operational description of musical space as a topological space, which makes it 
possible to conceive of every musical structure as a set of elements, which can be defined by selecting sets of points. Musical 
configurations, then, can be defined as point-sets that can be transformed into other configurations, and this in a gradual or 
rather abrupt way.  
In applying transformations to sets of points, the configurations mostly are left invariant with respect to at least some 
properties. These are called topological invariants. The sets, however, must be structured, allowing the mapping of each element 
of set A onto set B, with elements of A being the domain and elements of B being the co-domain (the values or images of 
A). Most interesting, however, are operation preserving mappings, that preserve the structure of the algebraic system. Such 
mappings or homomorphisms generate a transformed image of the original structure (the domain) in the image set (the range) 
and provide a numerical basis for identification and transformation algorithms. 

6. From static description to morphodynamical approach 
Music can be considered as a collection of sound/time phenomena, which have the potential of being structured. As such, it 
entails processes of discretization of the sonorous unfolding, which involve a quantal aspect of perception [7]. It allows us to 
describe music in geometric terms as a kind of distributed substrate with discontinuities and focal allocations of semantic 
weight. As such, we can conceive of music in “morphological” terms, which genuinely combines a discrete with an analogous 
description of the sound. It is exemplified in the conception of spectral morphology [4, 5] —where sonic morphologies may 
resemble one another, may be transformations of one another and may oppose one another—and in related elobarations of 
spectromorphology [11] and acousmatic morphology [6]. Such a morphological way of thinking is challenging. It provides a 
description of typical patterns of temporal unfolding as well as a description of their sounding articulation. It has received 
also impetus from other areas of research, to mention only the morphological and morphodynamical procedures for delimiting 
morphological lexicons as proposed by [9, 12]. 
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“Generic Additive Synthesis? Hints from the Early Foundational Crisis in Mathematics for Experiments 
in the Ontology of Sound” 
 
Keywords : sound ontology, foundational crisis, philosophy of mathematics, sound synthesis, experimental programming, live 
coding, axiomatics. 
 
Abstract : Already since the 19th century sound research, the idea of a frequency spectrum has been constitutive for the 
ontology of sound. Despite many alternatives, the sine wave thus still functions as a preferred basis of analysis and synthesis. 
This possibility has shaped what is taken as the most immediate and self-evident attributes of sound, be it in the form of 
sense-data and their temporal synthesis or the aesthetic compositional possibilities of algorithmic sound synthesis [2]. 
Against this background, our talk will consider the early phase of the foundational crisis in mathematics (Krise der Anschauung 
[5]), where the concept of continuity began to lose its self-evidence. This shall permit us to reread the historical link between 
the Fourier decomposition of an arbitrary function and early set theory [3] as a possibility to open up the limiting dichotomy 
between time and frequency attributes. With reference to Alain Badiou’s ontological understanding of the praxis of 
axiomatics [1], we propose to take the search for a specific sonic situation as an experimental search for its conditions or 
inner logic, here in the form of an unknown decompositional basis and its consequences. 
This search cannot be reduced to the task of finding the right parameters of a given formal frame. Instead, the formalisation 
process itself becomes a necessary part of its dialectics that unfolds at the interstices between conceptual and perceptual, 
synthetic and analytic moments. Generalising the simple schema of additive synthesis, we contribute an algorithmic method 
for experimentally opening up the question of what an attribute of sound might be, in a way that hopefully is inspiring to 
mathematicians, composers, and philosophers alike. 
 
References : [1] Badiou, A. Being and Event. London. 2007. [2] Erlmann, V. Reason and Resonance: A History of Modern Aurality. 
Zone Books, New York. 2010. [3] Grattan-Guinness, I. (Ed.) From the Calculus to Set Theory, 1630-1910. An Introductory History. 
Princeton, N.J. 1980. [4] Kaper, H.G. & S. Tipei (1999). “Formalizing the Concept of Sound”. In Proceedings of International 
Computer Music Conference, Beijing, pp. 387–390. [5] Volkert, K.Th. (1986), Die Krise der Anschauung, Vol. 3 of Studien zur 
Wissenschafts-, Sozial - und Bildungsgeschichte der Mathematik. Göttingen. 
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Special panel “Mathematics and Aesthetics in Julian Carrillo’s (1875-1965) work”: 
“Julián Carrillo’s Microtonal Counterpoint” 
 
Keywords : Julián Carrillo, Mazzola’s counterpoint, Counterpoint theorem, interval dicotomies, microtonalism. 
 
Abstract : In this talk I will show the progress made about my undergraduate thesis project under the codirection of Lluis-
Puebla and Agustin-Aquino. This dissertation research consists on a study around the works of Julian Carrillo looking for 
paralelisms between them and the progress of the mathematical-musical theory, specially the counterpoint theorem, because 
the specific microtonal space where the Carrillo’s works lie is somehow isomorphic to Z16, which is the least bound for 
exactly one interval’s dicotomy. The main goal is trying to read if Carrillo knew this dicotomy in his works, and in a more 
general way, try to develop a method to find this counterpoint dicotomies in any composition. A later goal, if having positive 
results, is to verify if Carrillo knew also about the prediction rules of the mazzolian counterpoint in a microtonal context. 
 
References : [1] Agustín-Aquino, O.A. “Counterpoint in 2k-tone equal temperament”. Journal of Mathmetic and Music 3(3):153–
164, 2009 [2] Agustín-Aquino, O.A., J. Junod & G. Mazzola. Computational Counterpoints World. To appear in the series 
Computational Music Theory, Springer, 2014. [3] Nieto, A., “Una aplicación del teorema de contrapunto”, ITAM Bachelor’s 
degree dissertation, Mexico City, 2011. 
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“Sonus Geometria: A Theoretical Classification Model of Electroacoustic Concepts Based on 
Fundamentals of Topology Dynamics” 
 
Keywords : topology dynamics, electroacoustic music, composition, theoretical electroacoustic math analysis. 
 
Abstract : This paper proposes a formal model of conceptual categorization for electronic and electroacoustic music 
composition based on Topological Dynamics. Given the dynamic system {X, R, π}, where X is a metric space and π : X × R 
→ R is a continuous function, we define by analogy, the Sound Space as a set of discrete events and whose behaviour is 
precisely defined by such topological system. 
Applying basic definitions from usual topology and from topological dynamics such like invariant sets, limit sets, periodicity 
and Poisson’s stability, we present a mathematical model that formalize processes and compositional concepts. Pieces which 
might include: acoustic instruments with electronics, multichannel spatialization, timbral and spectral dynamics and any 
electroacoustic compositional processes, can be structured in formal mathematical terms. Thereby gathering a formal and 
stable bridge between language and concept in electroacoustic compositions and the field of topological dynamics. This 
model allows a well founded theoretical analysis of electroacoustic works such as the one we will present with the piece 
Murmullo a voces. 
Sonus Geometria works as an alternative for well fundamented analysis tool in electroacoustic compositions due to its 
topological approach and oriented consistency balance between the theoretical baggage and final work’s aesthetics. 
Furthermore, the model allows us to use it as a sources for algorithmic processes in electroacoustic composition, particularly 
those funded in theoretical dynamic processes in the field of Dynamic Topology. 
 
References : [1] Bathia, N.P., & G.P. Szegö (1970). Stability Theory of Dynamical Systems. Springer. [2] J. de Vries (1993). Elements of 
Topological Dynamics. Springer. [3] Boon, J.P. & O. Decroly. (1994). Dynamical systems theory for music dynamics. Universite libre de 
Bruxelles. [4] Schaeffer, P. & G. Reibel (1967). Solfege de l’objet sonore, Reedition 1998, pref. by D. Teruggi, G. Reibel & B. 
Ferreyra. Paris: Coedition Ina-Publications. [5] Smalley, D. (1997). Spectromorphology: explaining sound-shapes. Department of 
Music, City University, Northampton Square, London. 
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“Melodic Pattern Segmentation of Polyphonic Music as a Set Partitioning Problem” 
 
Keywords : polyphonic music, motif, equivalence class, segmentation, integer programming. 
 
Abstract : In polyphonic music, melodic patterns (motifs) are frequently imitated or repeated, and transformed versions of 
motifs such as inversion, retrograde, augmentations, diminutions often appear. Assuming that economical efficiency of 
reusing motifs is a fundamental principle of polyphonic music, we propose a new method of analyzing a polyphonic piece 
that economically divides it into repeated motifs. 
To realize this, we take an integer programming-based approach and formalize this problem as a set partitioning problem, a 
well-known optimization problem. This analysis will be helpful for clarifying the structures of polyphonic music and may be 
useful for some systems of music analysis, performance, and composition. 

1. Motif division 
In polyphonic music like fugue-style pieces or J.S. Bach’s Inventions and Sinfonias, melodic patterns (motifs) are frequently 
imitated or repeated. Although some motifs are easy to find, others are not. This is because they often appear implicitly 
and/or appear in the transformed versions such as inversion, retrograde, augmentations, diminutions. Therefore, motif 
analysis is useful to understand how polyphonic music is composed. 
Simply speaking, we can consider the motifs that appear in a musical piece to be economical if the number of species of motifs 
is small, the number of repetitions is large, and the lengths of the motifs are long. Assuming that this economical efficiency of 
motifs is a fundamental principle of polyphonic music, we propose a new method of analyzing a polyphonic piece that 
efficiently divides it into a small number of species of motifs. Using this division, the whole piece is reconstructed with the 
pieces of motifs like a jigsaw puzzle (we call such a segmentation a motif division). This analysis will be helpful to clarify the 
structures of polyphonic music and may be useful for some systems of music analysis, performance, and composition. 
Studies about finding boundaries of melodic phrases are often based on human cognition. For example, [2] is based on 
grouping principles of Gestalt psychology, and [3] is based on short memory model. While these studies deal with relatively 
short range of perception and require small amounts of computational time, we focus on global configuration of motifs on 
the level of compositional plan. This requires us to solve a global optimization problem that is hard to solve. To deal with this 
difficulty, we take an integer programming-based approach [5] and formalize this problem as a set partitioning problem [1]. 
This problem can be solved by IP-solvers that use efficient algorithms such as the branch and bound method. 

2. Transformation Group and Equivalence Classes of Motifs 
In this section, we introduce equivalence classes of motifs derived from a group of motif transformations as the criterion for 
the identicalness of motifs. These equivalence classes are used to formulate the motif division in Sect. 3. 
Firstly, a motif is defined as an ordered collection of notes [N1, N2, …, Nk ] (k > 0), where Ni is the information for the i th 
note, comprising the combination of the pitch pi , start position si , and end position ei  (Ni = ( pi , si , ei ), si  < ei  ≤ si +1). Next, let 
M  be the set of every possible motif, and let Tp , St , R, I, Ar be one-to-one mappings (transformations) from M  to M , where Tp  
is the transposition by pitch interval p, St is the shift by time interval t (p, t ∈ R), R is the retrograde, I is the inversion, and 
Ar(r > 0) is the r -fold argumentation (diminution, in the case of 0 < r < 1). These transformations generate a transformation 
group T  whose operation is the composition of two transformations and whose identity element is the transformation that 
does noting. Each transformation in T  is a strict imitation that preserves the internal structures of the motifs. 

Here, a binary relation between a motif m (∈M ) and τ(m) (τ ∈ T ) can be defined. Due to the group structure of T , this 
relation is an equivalence relation (i.e., it satisfies reflexivity, symmetry and transitivity). Then, it derives equivalence classes in 
M . Because the motifs that belong to the same equivalence class share the same motif structure, thay can be regarded as 
identical (or from the same species)1. 

3. Formulation as a Set Partitioning Problem 
A Set partitioning problem, which has many applications in the context of operations research, is an optimization problem 
defined as follows. Let N be a set that consists of n elements {N1, N2, …, Nn}, and let M be a family of sets {M1, M2, …, 
Mm}, where each Mj is a subset of N. If ∪j ∈X Mj = N is satisfied, X, a subset of indices of M, is called a cover, and the cover X 
is called a partition if Mj 1 ∩ Mj 2 = /0 is satisfied for different j1, j 2 ∈ X. If a constant c j called a cost is defined for each Mj , the 
problem of finding the partition X that minimizes the sum of the costs Σ j ∈X c j is called a set partitioning problem. 
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If Ni corresponds to each note of a musical piece to be analyzed and Mj corresponds to a motif, the problem to find the most 
efficient motif division can be interpreted as a set partitioning problem. The index i starts from the first note of a voice to the 
last note of the voice, and from the first voice to the last voice. Mj (1 ≤ j ≤ m) corresponds to [N1], [N1, N2], [N1, N2, N3], …, 
[N2], [N2, N3], … in this order. The number of notes in a motif is less than a certain limit number. The objective function is 
defined as the number of motifs that appear in the motif division (this is realized if c j = 1). This objective function is inversely 
proportional to the average number of notes (length) for the motifs that appear in the motif division. Also, additional 
constraints are introduced to control the motif division adequately. For example, the number of equivalence classes that 
appear in the motif division is fixed to a certain small number (thanks to this constraint, repetition of the motifs is facilitated). 
By this formulation, we can expect an economical solution mentioned in Sect. 1. Fig.1 shows an example of the set of motif 
classes in Bach’s Invention No. 1, obtained by solving this problem using the IP-solver Numerical Optimizer 16.1.0. 
 

 
Fig. 1 An example of the set of representatives of motif classes that apper in the motif division of 

J.S. Bach’s Invention No. 1 (the number of motif classes was set at 13). 

Notes : 
1 Although the criterion for identical motifs defined here only deals with strict imitations, we can define the criterion in 
different ways to allow more flexible imitations, such as by (1) defining an equivalence relation from the equality of a shape 
type [see: 4] and (2) defining a similarity measure and performing a motif clustering (the resulting clusters derive an 
equivalence relation). In any case, making equivalence classes from a certain equivalence relation is a versatile way to define 
the identicalness of the motifs. 
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Timing”, Proc. ICMC, pp. 290―293 (2001). [3] Ferrand, M., P. Nelson & G. Wiggins. “Memory and Melodic Density: A 
Model for Melody Segmentation”, Proc. of the XIV Colloquium on Musical Informatics, pp.95―98 (2003). [4] Mazzola, G., et al.: 
The Topos of Music: Geometric Logic of Concepts, Theory, and Performance, Birkhäuser (2002). [5] Nemhauser, G.L. & L.A. Wolsey. 
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“Diagrams, Games and Time” 
 
Keywords : time, indeterminacy, games, graphs, diagrams, actions, Tom Johnson’s Networks and Looking At Numbers, Christian 
Wolff’s For One, Two or Three People. 
 
Abstract : In the closing section of his essay Towards a Philosophy of Music called Destiny’s Indicators, Iannis Xenakis proposes an 
extraordinarily audacious program for music: to alter for the human mind the transcendent categories of time and space as 
such. “Consequences: 1. It would be necessary to change the ordered structures of time and space, those of logic, .... 2. Art, 
and sciences annexed to it, should realize this mutation.” However, in theorizing time Xenakis retained many standard 
notions, particularly that of a linear ordering of events. Yet to think of time as a linear sequence from past to future does not 
present the only way of conceiving temporality (one may for example think of Bergson’s conic model, where the important 
dynamic rather goes between coexisting levels of the past, contracting towards and distending away from the present). 
In Xenakis’s thinking, the non-linear is relegated entirely to the complementary category of ‘music outside-time’. This is 
associated with various algebraic and other structures, such as symmetry groups which are made to operate on parametrized 
musical objects, allowing for definitions of transformations and relations between gestures in-time. Such groups can be 
thought of as generated by a base set of permutations, and this can make for a representation of the operations in graph 
form, with each vertex corresponding to a state of the musical object, and each edge to a basic operation. This comes very 
close to the networks that have been explored by Tom Johnson in his recent work, and in his collaboration with Franck 
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Jedrzejewski, Looking at Numbers. The typical compositional problem that Johnson addresses in his network pieces involves 
finding a “logical” path through these networks. The task is not obvious: the networks in themselves do not generally show a 
logical preference for one path over another. Put differently, these networks are not trivially linearizable, which would 
correspond to Xenakis’s notion of such structures forming a “music outside-time”. 
I propose to see such representations as rather encoding a richer, non-linear approach to time. A graph (or other suitable 
mathematical category) represents a whole field of potential time paths, which can be projected into linear time in many ways. 
It is my poetical hypothesis that the form of this field is a real part of musical performance. As I put it in my 2013 essay, 
Action Time: “Time becomes a field of variations rather than a line. Of course, in practical performance, there will always be a 
single line drawn through this field, since the time that we live through remains linear. Yet the other variations can somehow 
be sensed. They are, as paths not taken, part of the performers’ actions and determine a quality of performing. They thereby 
remain active as virtual parts.” 
This notion of a time field is tied to what the same essay termed an action grammar. Clearly, the two notions are interrelated: a 
time field is some sort of web of states, which are related by the way actions can link one state to another. The time field can 
also be understood as something like the frame of a Kripke model, with the action grammar defining its accessibility relations. 
A third type of element would be a kind of game rule in performance. This is an instance of what I will call transcendent criteria 
by which the actions could be bound, not only by their local possibilities (accessible actions in a particular state), but also by 
their collective effect (criteria for well-formedness of an actualized path). 
It is not my present intention as a composer/theorist to present a definitive formalization of these notions. Rather, I would 
like to explore the questions that are musically relevant and that might possibly prove mathematically fertile. To this end, 
during this presentation I will explore the relations between the three notions of time field, action grammar, and transcendent 
criteria in two musical settings. 
On the one hand, I will briefly explore my extremely simple prose composition Ensemble. By a very simple rule, this piece 
defines a time field of transitions between possible sonorities, that is surprisingly complex to navigate for an ensemble. The 
action grammar here is defined implicitly by the time field and by transcendent criteria. 
For the second example, I will propose a reading of the notation in Christian Wolff’s score For One, Two or Three People as 
constituting an action grammar. The score defines musical gestures very loosely, as a kind of very abstract diagrams for 
actions, rather than as specific materials. I will call this notational style Wolff diagrams. The important thing is that the gestures 
are defined partially, that is, in relation to other sound events that are not co-determined by the notation, and that the 
gestures must be coordinated with. Performers play a given repertoire of gestures in a free order, trying to comply with the 
rules on the spot, which gives the piece a musically complex, instable, game-like tension. That is, the challenge for musicians 
is to assemble the diagrams in real-time into a correct performance. 
It is my hypothesis that this notational practice still has more compositional and combinatorial potential to yield. Musically, I 
am convinced that the Wolff diagrams have not nearly been exhausted in his original work, and that whole worlds of 
interactive music practices remain to be found in them. Mathematically, there may be interesting questions to be asked about 
the relationship between the definition of an action grammar, the universe of its correct realizations, and the properties of the 
time field generated, as well as their interaction with transcendent criteria. Philosophically, the hope is that such explorations 
will have something to say about the relationship between actions, (inter-)subjectivity, and temporality. 

References : [1] Xenakis, I. “Vers une philosophie de la musique”, Revue d’esthétique, 31, pp. 173–210 (Paris, 1968). [2] Bergson, 
H. L’évolution créatrice, Paris, 1907. [3] Johnson, T. & F. Jedrzejewski, Looking at Numbers, Springer, Berlin, 2014. 
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“On Minimal Change Codes for Generating Music” 
 
Keywords : minimal change codes, de Bruijn sequences, Gray codes, generative music. 
 
Abstract : In this paper, we discuss two types of minimal change codes and their application to music composition: Gray 
codes, which are enumerations of all binary words of a given length n such that only one bit changes from word to word; and 
de Bruijn sequences, which are cyclic sequences that given an alphabet, represent all words of a given size exactly once. For 
musical purposes, we apply additional constraints. In particular, we define a maximally balanced, maximally uniform run-
length Gray code and a De Bruijn sequence we denote as ‘space-limited’, which is constructed from an alphabet of integers 
that sum to 0 and where the difference of extremal values of the running sum of the sequence is as small as possible. Based 
on these extra constraints, we pose two open problems that might be of interest to mathematicians: 1) what are the bounds 
on the minimum range of run-lengths given a balanced Gray code of n bits, and 2) what are the lower bounds on the range of 
extremal values in the running sum of optimal solutions for space-limited De Bruijn sequences? 
 
References : [1] Chaitin, G. “A theory of program size formally identical to information theory”, J. ACM 22 (1975), no. 3, 329–
340. [2] Chaitin, G. Meta Math!: The Quest for Omega, Vintage, 2004. [3] Govert de Bruijn, N., A combinatorial problem, 
Koninklijke Nederlandse Academie van Wetenschappen 49 (1946), 758–764. [4] Etzion, T. “Single-track Gray codes and 
sequences”, Lecture Notes in Computer Science, vol. 4893, Springer Berlin/Heidelberg, 2007, pp. 129–133. [5] Fredricksen, H. & J. 
Maiorana, “Necklaces of beads in k colors and k-ary de Bruijn sequences”, Discrete Mathematics 23 (1978), no. 3, 207–210. [6] 
Gray, F. Pulse code communication, U.S. Patent 2,632,058, led 1947. [7] Knuth, D. The Art of Computer Programming, Addison 
Wesley, 1997. [8] Kolmogorov, A. “Three approaches to the quantitative definition of information”, International Journal of 
Computer Mathematics 2 (1968), no. 1, 157–168. [9] Rossi, F., P. van Beek, T. Walsh, Handbook of Constraint Programming 
(foundations of artificial intelligence), Elsevier Science Inc., New York, 2006. [10] Savage, C. “A survey of combinatorial gray 
codes”, SIAM Review 39 (1997), no. 4, 605–629. [11] Stevens, B., M. Cooke, C. North, Beckett-Gray codes, preprint. [12] Winter, 
M. & A. Akhmedov, Generating chordal and timbral morphologies using Hamiltonian cycles, preprint, 2010. 
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Abstract : Beethoven’s Heiliger Dankgesang, the third movement of his late A minor String Quartet, op. 132, remains inspiring 
yet enigmatic nearly two centuries after its composition. Its biographic resonances, play of musical topics, and misprision of 
antiquated contrapuntal styles have all been well explored. But current theories of harmony are not well tooled to address one 
of its most puzzling features, the status of tonality in this nominally “Lydian mode” work. The Discrete Fourier Transform 
(DFT) on pcsets, developed by Lewin [3], Quinn [4], Amiot [1], Amiot and Sethares [2], and Yust [7] may have the potential 
to breach lingering gaps between current theories of tonality and the traditional notion of keys, giving hermeneutic access to 
the tonality of this work. 
As a voice-leading based approach that can address large-scale tonal structure, Schenkerian theory is widely regarded to be 
amongst the most sophisticated extant theories of tonality. However, when Schenker claimed that his theory of levels would 
supplant traditional notions of form and key, he overplayed his hand, creating conceptual tensions that persist in Schenkerian 
theory today. Schachter’s [5] insightful deconstruction of the Schenkerian perspective on keys stops short of denying their 
reality even as he claims that Schenkerian structures override them. The problem with this idea is evident in some of 
Schenker’s own analyses. His analysis of the exposition of Brahms’s F major Cello Sonata [6, Fig. 110d2], for example, 
incorrectly interprets the entire subordinate theme (mm. 34–60) in the key of A minor. It is actually almost entirely in the key 
of C major, including an elaborate C major cadential process which is diverted into an A minor cadence only at the last 
moment. Since Schenker’s middlegrounds are reductive voice-leading progressions that retain only chords, not their tonal 
contexts, he recasts the tonal context of an entire thematic area implausibly in terms of what is, in this case, a rather fleeting 
goal. 
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The Heiliger Dankgesang presents a different, but related, kind of problem, a non-tonic conclusion indicative of a deeply 
entrenched disjunction between chord and key. The piece begins in F major, but ends only on F major, because its tonal 
context has shifted to C major. The meaning and purpose of this unusual tonal design is inaccessible to a theory that reduces 
the tonal contexts out of the middleground representation. We can overcome this problem without throwing the proverbial 
baby—the idea of deep structural voice leading—out with the bathwater by developing a more flexible theory of voice 
leading that can apply to structures other than fixed cardinality chords. 
The DFT reparameterizes a pcset by modeling it with sinusoidal pc-distributions that divide the octave evenly into 1–11 
parts. The phase of these components indicates which perfectly even distribution the pcset best approximates. The special 
advantage of the DFT is that it applies to any cardinality of chord [7]. We are interested here primarily in the phase of the 
third component, which can be interpreted as an arrangement of triadic orbits. These reflect triadic voice-leading properties of 
a pcset regardless of whether it is a triad or three-note chord. Figure 1 shows the triadic orbits of all the significant keys that 
appear in the Heiliger Dankgesang movement, with major keys represented by the intersection of their tonic and dominant 
seventh chords, and minor keys by the harmonic minor scale. Notes near the center of the orbits (dashed lines) are most 
stable, while notes near the periphery (triangle vertices) are less stable and act as neighbors to notes at the center of the orbit. 
(These stability conditions need to be augmented, however, by information from the fifth Fourier component, which 
indicates which notes are at a further remove on the circle of fifths.) A succession of pcsets (representing chords, keys, etc.) 
turns the triadic orbit boundaries in a direction corresponding to the overall direction of triadic voice leading. 
 

 
Fig. 1. Triadic orbits of keys used in the Heiliger Dankgesang movement. 

 

The C-D interval is a prominent motivic element of the movement, manifest at many levels, and brought the forefront 
especially in the final chorale section and coda. The status of this interval constitutes one of the most significant differences 
between the triadic orbits of the F major tonality suggested by the initial intonation of the chorale sections, and the C major 
tonality established in the later phrases of the chorale. In F major, D is an upper neighbor to C, whereas in C major the notes 
are separated into different orbits. D remains unstable in C major, but has an upward-striving position within the triadic orbit 
of the tonic third. Intermediate between these states is the uninflected C diatonic scale, in which D is ambiguous between two 
triadic orbits. 
The first phrase of the chorale tune resists outlining the F–C tetrachordal tonal space with a descent to C (Fig. 2), fulfilling 
this implication only in the coda, when it reappears in the bass. In the C major context of the second chorale phrase, it 
projects its upward-resolving character at the cadence, denying a conventional cadential move that melodically crosses a 
triadic orbit boundary. 
The contrasting Neue Kraft sections of the piece juxtapose D major directly with the C major of the choral sections. These 
keys are polar opposites in their triadic orbits, and whereas D occupies an unstable peripheral position in C and F major, in D 
major it is at the center of its orbit. 
 

 
Fig. 2. Interactions of D and C in the chorale tune. 
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The triadic status of the note A, the tonic of the surrounding movements and the quartet as a whole, is also significant. It is 
stable in F major, as in A major and minor, but an upper neighbor in C major. The Neue Kraft section puts intense melodic 
focus on the A, highlighting its “new strength” as the stable center of its triadic orbit. The coda of the last chorale section 
recalls the Neue Kraft section in its repeated use of the ethereal A in the upper reaches of the first violin’s range, especially in 
the penultimate measure, where the unstable F major chord in a C major context strives against tonality itself, towards the 
rarified air of the eponymous “divinity” ( gottheit ). 

References : [1] Amiot, E., “The Torii of Phases”. In J. Yust, J. Wild, and J.A. Burgoyne (eds.), Mathematics and Computation in 
Music: 4th International Conference, MCM 2013, 1–18. Springer, 2013. [2] Amiot, E. & W. Sethares. “An Algebra for Periodic 
Rhythms and Scales”. Journal of Mathematics and Music, 5/3, 149–69. [3] Lewin, D. “Special Cases of the Interval Function 
between Pitch-Class Sets X and Y”. Journal of Music Theory 45/1 (2001). [4] Quinn, I. “General Equal Tempered Harmony”. 
Perspectives of New Music 44/2–45/1, 114–159, 4–63 (2006). [5] Schachter, C. “Analysis by Key: Another Look at Modulation”. 
Music Analysis 6/3, 289–318 (1987). [6] Schenker, H. Free Composition: Volume III of New Music Theories and Phantasies, trans. E. 
Oster. Longman (1979). [7] Yust, J. “Schubert’s Harmonic Language and Fourier Phase Space”. Unpub. ms. available at 
http://people.bu.edu/jyust/SchubertDFT.pdf 
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Abstract : 
 Introduction 
Guerino Mazzola has proposed a perspicuous dialectics, formed by Galois connections, or adjunctions, between formulas 
and gestures [2, 3, 4]. The dialectics extends his earlier, profound contributions to music theory presented in the Topos of Music 
[1], and opens up a new range of analysis, where musical interpretation dynamizes the complex spectrum of musical life. The 
full triadic range of sounds, partitions-formulas, and gestures becomes then suitable for complex, multilayered 
conceptualizations. 
We can profit from earlier semiotic, philosophical and mathematical constructions to enrich Mazzola’s approach. Three main 
lines of thought (i-iii ) seem interesting: 
(i) PEIRCE’s triadic sign (object-representamen-interpretant) helps to multiply, or extend continuously in space [7], dyadic 
polarities (such as Galois connections or adjunctions [8]). An adequate use of Peirce’s triadic semeiotics should help then to 
expand Mazzola’s multilayered conception of music. Moreover, Saint-Victor’s definition of “gesture” (movement and 
figuration with an aim, fostered by Mazzola) is fully pragmaticist in Peirce’s sense. 
(ii) MERLEAU-PONTY’s entrelacs and chiasme [5, 6] postulate a gluing of subject/object, being/world, mind/body where the 
chiasma (crossing of optic nerves on the brain) helps to explain passages between visibility and non-visibility. A similar 
chiasmatic experience is in act in music, along the Galois connection formulas–gestures. 
(iii) A long tradition in French philosophy of mathematics has acknowledged the importance of gestures in knowledge. 
Mazzola has reckoned [2] the importance of Merleau-Ponty, Cavaillès, Deleuze, Châtelet, Alunni, but those brief mentions 
may be expanded to a wider underlying philosophical corpus for gesture theory. On another hand, Mazzola’s 
compression/unfolding functors between formulas and gestures recall the dual processes uniformization/ramification in 
RIEMANN surfaces [9], dear to many French philosophers of mathematics. 
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Our contribution 
Profiting from (i)-(iii), we will extend Mazzola’s diagrams for the dialectic (Galois connection / adjunction) formulas–gestures 
along the following dynamical sketch, to be amplified to a multi-level Riemannian and Peircean mode, with, at the center, 
Merleau-Ponty’s entrelacs or chiasme.  

 

 

 

 

 

 

 

 

 

Figure 1. The evolving diagram of musical semiosis. 

The diagram evolves in three dimensions (tetrahedron with three main triangles around the entrelacs/chiasme) producing the 
increasing spatial spiral (with many leaves in a Riemann surface) of musical architecture. A multilayered transit between the 
paths, faces and leaves of a complex geometrical structure should help then to explain the ambiguities, richness and variety of 
musical experience. 

Sounds compress in formulas, which unfold in gestures, which produce sounds, which generate new musical signs and 
actions, continuing along Riemann’s ramifications and Peirce’s infinite semiosis. Merleau-Ponty’s entrelacs enter the picture 
along the weaving of many forms of reflexivity between objects, representamens and interpretants. 
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Gallimard, 1964. [7] Zalamea, F. Peirce’s Logic of Continuity, Boston: Docent Press, 2012. [8] Zalamea, F. “La emergencia 
abismal de la matemática moderna. (I) Galois (1811–1832)”, Mathesis, Mexico, to appear (2015), 20 pp. [9] Zalamea, F. “La 
emergencia abismal de la matemática moderna. (II) Riemann (1826–1846)”, Mathesis, Mexico, to appear (2015), 24 pp. 
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